Metals usually become cations since electrons are negatively charged and when they are lost there are more protons than electrons making a positive net charge in the atom. (cations are positively charged ions while anions are negatively charged ions)
I hope this helps. Let me know if anything is unclear.
Answer:
0.01395mol Cr2O3
Explanation:
the molar mass of Cr2O3 is 151.9904 g/mol
2.12g Cr2O3 x 1 mol/151.9904g = 0.01395mol Cr2O3
Answer:
The ionization equation is
⇄
(1)
Explanation:
The ionization equation is
⇄
(1)
As the Bronsted definition sais, an acid is a substance with the ability to give protons thus, H2PO4 is the acid and HPO42- is the conjugate base.
The Ka expression is the ratio between the concentration of products and reactants of the equilibrium reaction so,
![Ka = \frac{[HPO_{4}^{-2}] [H_{3}O^{+}]}{[H_{2}PO_{4}^{-}] [H_{2}O]} = 6.2x10^{-8}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BHPO_%7B4%7D%5E%7B-2%7D%5D%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BH_%7B2%7DPO_%7B4%7D%5E%7B-%7D%5D%20%5BH_%7B2%7DO%5D%7D%20%3D%206.2x10%5E%7B-8%7D)
The pKa is

The pKa of H2CO3 is 6,35, thus this a stronger acid than H2PO4. The higher the pKa of an acid greater the capacity to donate protons.
In the body H2CO3 is a more optimal buffer for regulating pH due to the combination of the two acid-base equilibriums and the two pKa.
If the urine is acidified, according to Le Chatlier's Principle the equilibrium (1) moves to the left neutralizing the excess proton concentration.
Use the periodic table , it should be the long decimal if u look it up
Answer:
15.2 mL
Explanation:
First we calculate the volume of the copper

when this volume of copper is added to the water, the water level will rise by the level of the volume of copper. So the final volume is:
14.6 mL + 0.5580 mL = 15.158 mL
Since the measuring cylinder is graduated to one decimal place , we can round this up to 15.2 mL