Answer: 40.3 L
Explanation:
To calculate the moles :
According to stoichiometry :
1 moles of
produces = 3 moles of
Thus 0.600 moles of
will produce=
of
Volume of
Thus 40.3 L of CO is produced.
Mass, air has that. Since what fills up a balloon? A gas
Shape, it has no definite shape. This one is accurate, it has no definite shape, it takes the shape of the object it's in.
Volume, does air take up space? If it does then yep. Balloon example/
Density, yes it does, because it's tightly wounded up.
D
Density is Mass divided by volume.
The specific heat capacity of the metal given the data from the question is 0.66 J/gºC
<h3>Data obtained from the question</h3>
- Mass of metal (M) = 76 g
- Temperature of metal (T) = 96 °C
- Mass of water (Mᵥᵥ) = 120 g
- Temperature of water (Tᵥᵥ) = 24.5 °C
- Equilibrium temperature (Tₑ) = 31 °C
- Specific heat capacity of the water (Cᵥᵥ) = 4.184 J/gºC
- Specific heat capacity of metal (C) =?
<h3>How to determine the specific heat capacity of the metal</h3>
The specific heat capacity of the sample of the metal can be obtained as follow:
Heat loss = Heat gain
MC(M –Tₑ) = MᵥᵥCᵥᵥ(Tₑ – Tᵥᵥ)
76 × C × (96 – 31) = 120 × 4.184 × (31 – 24.5)
C × 4940 = 3263.52
Divide both side by 4940
C = 3263.52 / 4940
C = 0.66 J/gºC
Learn more about heat transfer:
brainly.com/question/6363778
#SPJ1