A) Temperature does not affect reaction rate
Answer:
The answer to your question is letter C.
Explanation:
Reaction
Potassium hydroxide = KOH
Barium chloride = BaCl₂
Potassium chloride = KCl
Barium hydroxide = Ba(OH)₂
KOH + BaCl₂ ⇒ KCl + Ba(OH)₂
Reactant Elements Products
1 K 1
1 Ba 1
2 Cl 1
1 H 2
1 O 2
The reaction is unbalanced
2KOH + BaCl₂ ⇒ 2KCl + Ba(OH)₂
Reactant Elements Products
2 K 2
1 Ba 1
2 Cl 2
2 H 2
2 O 2
Now, the reaction is balanced
Answer:
7,94 minutes
Explanation:
If the descomposition of HBr(gr) into elemental species have a rate constant, then this reaction belongs to a zero-order reaction kinetics, where the r<em>eaction rate does not depend on the concentration of the reactants. </em>
For the zero-order reactions, concentration-time equation can be written as follows:
[A] = - Kt + [Ao]
where:
- [A]: concentration of the reactant A at the <em>t </em>time,
- [A]o: initial concentration of the reactant A,
- K: rate constant,
- t: elapsed time of the reaction
<u>To solve the problem, we just replace our data in the concentration-time equation, and we clear the value of t.</u>
Data:
K = 4.2 ×10−3atm/s,
[A]o=[HBr]o= 2 atm,
[A]=[HBr]=0 atm (all HBr(g) is gone)
<em>We clear the incognita :</em>
[A] = - Kt + [Ao]............. Kt = [Ao] - [A]
t = ([Ao] - [A])/K
<em>We replace the numerical values:</em>
t = (2 atm - 0 atm)/4.2 ×10−3atm/s = 476,19 s = 7,94 minutes
So, we need 7,94 minutes to achieve complete conversion into elements ([HBr]=0).
Oxygen has 8 electrons. On the outer ring, it has 6 valance electrons. It need 2 more valance electrons to be stable.