Answer:
C. how the size of a magnet affects the strength of its magnetic pull on objects.
Explanation:
"Magnetic force" is <em>inversely proportional to distance squared. </em>This is also related to the size of a magnet. The bigger the size, the bigger the domain it occupies and the stronger the magnetic field. However, this is not often the case and it largely depends on the types of magnets.
In the situation above, Jazelle wanted to determine how her five different-sized magnet affect the strength of their magnetic pull on the paper clips. In order to do this, she tried to<em> measure the distance</em>. The<em> closer the distance</em>, the <em>higher the magnetic field</em> and the stronger the strength. The farther the distance, the<em> lower the magnetic field</em> and the <em>weaker the strength.</em>
So, this explains the answer.
Without units, the results of your measurement would be unclear and it would be hard to know what each seperate measurement is telling you.
When it comes to physical changes like phase changes, there are two types of heat energy: sensible heat and latent heat. Sensible heat is the heat absorbed/released when you heat the substance but it doesn't change phase. An example would be heating lukewarm water. The substance is liquid all throughout. Latent heat, on the other hand, is the heat absorbed/released when there is a phase change. An example would be boiling water, because it changes liquid to vapor.
Hence, for freezing liquid, you use the latent heat, specifically the heat of fusion. The answer should be
2.5 g * (1 mol/18.02 g) * 6.03 kJ/mol = 0.84 kJ/mol
The answer is not in the choices. You only use Hvap if you boil water.
Answer:
80.0 g Na and 20.0 g N2.
Explanation:
This means the limiting reactant determines the maximum mass of the product formed.
<em>The Octet Rule requires all atoms in a molecule to have 8 valence electrons--either by sharing, losing or gaining electrons--to become stable. For Covalent bonds, atoms tend to share their electrons with each other to satisfy the Octet Rule.</em>