Hi There! :)
<span>Examples of the period, frequency, speed of a wave in a sentence?
Examples
•</span><span>He indicated the space behind him with a </span>wave<span> of a hand.
</span><span>
•</span><span>On land only the grass and trees </span>wave, but the water itself is rippled by the wind.
•<span>But wherever it may turn there always will be the </span>wave<span> anticipating its movement.</span>
•<span>Harbor was completely submerged by the great </span>wave, which still came<span>
</span>
Answer:
The wavelength of sunlight that can cause this bond breakage is 242 nm
Explanation:
The minimum energy of the sunlight that'll break Oxygen-oxygen bond must match 495 KJ/mol
But 1 mole of any molecule contains 6.02 × 10²³ molecules/mol
Each molecule of Oxygen will require (495 × 10³)/(6.02 × 10²³) = 8.22 × 10⁻¹⁹ J
E = hf
v = fλ
f = v/λ
f = frequency of the sunlight
λ = wavelength of the sunlight
v = speed of light = 3.0 × 10⁸ m/s
E = hv/λ
λ = hv/E
h = Planck's constant = 6.63 × 10⁻³⁴ J.s
λ = (6.63 × 10⁻³⁴)(3 × 10⁸)/(8.22 × 10⁻¹⁹)
λ = 2.42 × 10⁻⁷ m = 242 nm.
The first rule of vectors is that the horizontal and vertical components are separate. Disregarding air resistance, the only thing we have to worry about is gravity.
The appropriate suvat to use for the vertical component is v = u +at
I will take a to be -9.81, you may have to change it to be 10 if your qualification likes g to be 10.
v = 30 + (-9.81x2)
v = 30 - 19.62
=10.38m/s
Therefore we know that after 2.0 s the vertical component will be 10.38ms^-1, ie 10m/s as the answers given are all to 2sf.
The horizontal component is completely separate to the vertical component and since there is no air resistance, it will remain constant throughout the projectiles trajectory. Therefore it will remain at 40ms^-1.
Combining this together we get:
(1) vx=40m/s and vy=10m/s
Out of the choices given, the statement about how light travels is "<span>Light can travel in a vacuum, and it travels faster if the light source is moving."</span>