Answer:
1) True, 2) True, 3) False, 4) False, 5) False
Explanation:
1) True. Dissipative energy cannot be recovered, in general it is a form of heat
2) True. The dissipation can be by radiation, heat
3) False. Mechanical energy is divided into K and U but not in equal parts
4) False. When there are dissipative interactions, part of the mechanical energy is set in the form of heat, so its value decreases
5) False. Mechanical energy is the sum of those two energies
In a direct current (DC) electrical circuit, the voltage (V in volts) is an expression of the available energy per unit charge which drives the electric current (I in amperes) around a closed circuit. Increasing the resistance (R in ohms) will proportionately decrease the current which may be driven through the circuit by the voltage.
Each quantity and each operational relationship in a battery-operated DC circuit has a direct analog in the water circuit. The nature of the analogies can help develop an understanding of the quantities in basic electric ciruits. In the water circuit, the pressure P drives the water around the closed loop of pipe at a certain volume flow rate F. If the resistance to flow R is increased, then the volume flow rate decreases proportionately. You may click any component or any relationship to explore the the details of the analogy with a DC electric circuit.
Answer:

Explanation:
For n-=1 state hydrogen energy level is split into three componets in the presence of external magnetic field. The energies are,
,
,

Here, E is the energy in the absence of electric field.
And
are the highest and the lowest energies.
The difference of these energies

is known as Bohr's magneton.
B=2.5 T,
Therefore,

Now,

Therefore, the energy difference between highest and lowest energy levels in presence of magnetic field is 
Answer:
The equipment to use is: a beaker, a fixed amount of water, a thermometer.
The mass of water, the time, the temperature for each time should be noted and a graph of Temperature versus time should be made
Explanation:
The design of an experiment is to place the beaker in the microwave, with a good amount of water (approximately ⅔ of its capacity) and turn it on for small periods of time, generally the minimum is 30 s, quickly open the microwave, place a thermometer or better yet an infrared thermometer to measure the temperature of the water; repeat this several times.
The advantage of the infrared thermometer is that it reduces the transfer of heat between the water and the thermometer.
The mass of water, the time, the temperature for each time should be noted and a graph of Temperature versus time should be made.
The equipment to use is: a beaker, a fixed amount of water, a thermometer.
The main precaution that must be taken is not to open the microwave while it is on.
Pulling open a door, your weight, and a magnet on your refrigerator