Answer:
The average force exerted on the window due to two snowballs is 6 N
Explanation:
Given:
Mass of snowballs
Kg
Velocity of snowball 
For finding the average force,
Force is equal to the change in momentum,

Here, final velocity is zero so we write,

Where
sec

N
Above value of force is due to one ball, but here given in question there are two ball,

N
Therefore, the average force exerted on the window due to two snowballs is 6 N
Answer:
c. vf is greator than v2, but less than v1
Explanation:
The principle of conservation of linear momentum states that when two or more bodies act upon one another, their total momentum remains constant.
In a system of colliding bodies the total momentum of the system just before the collision is the same as the total momentum just after the collision.
Collisions in which the kinetic energy is conserved are called elastic collision.
Collisions in which the kinetic energy is not conserved are called inelastic collisions. If the two objects stick together after the collision and move with a common velocity, the collision is said to be perfectly inelastic.
<em>The above scenario is a perfectly inelastic collision. The initial velocity of particle 1 was greater than particle 2 before collision. After collision, its velocity will reduce to a final velocity vf as it transfers some of its kinetic energy to particle 2; whereas, the velocity of particle 2 will increase to a final velocity vf as it absorbs some of the kinetic energy of particle 1.</em>
Therefore,
a. vf = v2 is wrong because vf is greater than v2
b. vf is less than v2 is wrong because vf is greater than v2
c. vf is greater than v2, but less than v1 is correct.
d. vf = v1 is wrong because vf is less than v1
Momentum describes an object in motion and is determined by the product of two variables: mass and velocity. Mass -- the weight of an object -- is usually measured in kilograms or grams for momentum problems. Velocity is the measure of distance traveled over time and is normally reported in meters per second. Examining the possible changes in these two variables identifies the different effects momentum can have on an object in motion.
Answer:
20.7 s
Explanation:
The equation to calculate the velocity for a uniform acceleration a, time t and initial velocity v₀:
v = a*t + v₀
Solve for t:
t = (v - v₀)/a