Answer:
option c) 2 is the right answer
To solve this problem we will apply the linear motion kinematic equations. With the information provided we will calculate the time it takes for the object to fall. From that time, considering that the ascent rate is constant, we will take the reference distance and calculate the distance traveled while the object hit the ground, that is,



Then the total distance traveled would be



Therefore the railing will be at a height of 77.7m when it has touched the ground
66666666666666666666666666666666666666666666666666666666666666666666666666666666666666
Answer:
Magnitude of the force is 2601.9 N
Explanation:
m = 450 kg
coefficient of static friction μs = 0.73
coefficient of kinetic friction is μk = 0.59
The force required to start crate moving is
.
but once crate starts moving the force of friction is reduced
.
Hence to keep crate moving at constant velocity we have to reduce the force pushing crate ie
.
Then the above pushing force will equal the frictional force due to kinetic friction and constant velocity is possible as forces are balanced.
Magnitude of the force

This is true thermal energy is transferred from the warm gulf stream ocean water