Answer:
It cannot be constant because if it does not change and each time it increases its strength and speed.
Explanation:
Answer:
A) a = 73.304 rad/s²
B) Δθ = 3665.2 rad
Explanation:
A) From Newton's first equation of motion, we can say that;
a = (ω - ω_o)/t. We are given that the centrifuge spins at a maximum rate of 7000rpm.
Let's convert to rad/s = 7000 × 2π/60 = 733.04 rad/s
Thus change in angular velocity = (ω - ω_o) = 733.04 - 0 = 733.04 rad/s
We are given; t = 10 s
Thus;
a = 733.04/10
a = 73.304 rad/s²
B) From Newton's third equation of motion, we can say that;
ω² = ω_o² + 2aΔθ
Where Δθ is angular displacement
Making Δθ the subject;
Δθ = (ω² - ω_o²)/2a
At this point, ω = 0 rad/s while ω_o = 733.04 rad/s
Thus;
Δθ = (0² - 733.04²)/(2 × 73.304)
Δθ = -537347.6416/146.608
Δθ = - 3665.2 rad
We will take the absolute value.
Thus, Δθ = 3665.2 rad
Answer:
Newtons law
Explanation:
According to this law, a body at rest tends to stay at rest, and a body in motion tends to stay in motion, unless acted on by a net external force.
Answer:
Friction is useful in some cases like walking and cycling ..
but it is unwanted in machines as it create unwanted sounds and heat .,due to which we loss energy
Explanation:
mark me as brainliest ❤️
The y-component of the acceleration is 
Explanation:
The y-component of the ice skater acceleration can be calculated with the equation

where
is the y-component of the final velocity
is the y-component of the initial velocity
t is the time elapsed
Here we have:
- Initial velocity is
at
, so its y-component is 
- Final velocity is
at
, so its y-component is 
The time elapsed is
t = 8.33 s
Therefore, the y-component of the acceleration is

Learn more about acceleration:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly