The equation in slope-intercept form for the line that passes through the point ( -1 , -2 ) and is perpendicular to the line − 4 x − 3 y = − 5 is 
<em><u>Solution:</u></em>
<em><u>The slope intercept form is given as:</u></em>
y = mx + c ----- eqn 1
Where "m" is the slope of line and "c" is the y - intercept
Given that the line that passes through the point ( -1 , -2 ) and is perpendicular to the line − 4 x − 3 y = − 5
Given line is perpendicular to − 4 x − 3 y = − 5
− 4 x − 3 y = − 5
-3y = 4x - 5
3y = -4x + 5

On comparing the above equation with eqn 1, we get,

We know that product of slope of a line and slope of line perpendicular to it is -1

Given point is (-1, -2)
Now we have to find the equation of line passing through (-1, -2) with slope 
Substitute (x, y) = (-1, -2) and m = 3/4 in eqn 1



Thus the required equation of line is found
Consider the following sets of sample data: A: $29,400, $30,900, $21,000, $33,200, $21,300, $24,600, $29,500, $22,500, $35,200,
Lana71 [14]
Answer:
CV for A = 21.8%
CV for B = 15.5%
Step-by-step explanation:
The formula for coefficient of variation is:
CV = Standard Deviation / Mean
So,
For A:
Mean = Sum/No. of items
= 391300/14
=$27950
and
SD = $6085.31
CV for A = 6085.31/27950 * 100
=21.77%
Rounding off to one decimal
CV for A = 21.8%
For B:
Mean = Sum/No. of items
= 43.58/11
=3.96
and
SD = 0.615
CV for B = 0.615/3.96 * 100
=15.53%
=15.5% ..
Answer:

Explanation:
Volume of right rectangular prism is same as volume of cuboid
Length = 22.9 meters
Width = 7.5 meters
Height = 4.6 meters
Volume of right rectangular prism = Length × Width × Height
= 22.9 × 7.5 × 4.6
= 22.9 × 34.5
= 790.05 meter³
= 790 meter³
If the center of the cercle is (0,0) then the standard equation becomes"
x²+y²=(4.5)²
$20 a month. if u subtract the amount that she started with from $85, you get $60. $60 divided by 3 months is $20 a month