Hi there
The formula of the present value of annuity ordinary is
Pv=pmt [(1-(1+r)^(-n))÷r]
So we need to solve for pmt (the amount of the annual withdrawals)
PMT=pv÷ [(1-(1+r)^(-n))÷r]
Pv present value 65000
R interest rate 0.055
N time 10 years
PMT=65,000÷((1−(1+0.055)^(
−10))÷(0.055))
=8,623.40....answer
Hope it helps
Answer:
270 s
Step-by-step explanation:
4 minutes = 240s
add the other 30s
boom
Answer: a= b/ b+2
Step 1: factor out variable a.
a(b+2)= b
Step 2: divide both sides by b+2.
a(b+2)/ b+2 = b/b+2
Hey, can you please fix this question? I can't seem to understand it. When you do, please tell me so I can help you out!