Answer:
Invasive species are an organism that causes ecological or economic harm in a new environment where it's not native.
Explanation:
An invasive species can harm both the natural resources in the ecosystem as well it threaten the human use of these resources and invasive species can be introduced to a new area via the ballast water of oceangoing ships, intentional and accidental releases of aquaculture species, aquarium specimens or bait, and etc.
Invasive species is capable of causing extinctions to native plants and animals, reducing biodiversity, competing with native organisms for limited resources, and altering habitats. This can also result a huge economic impacts and fundamental disruptions of coastal and the great lakes of the ecosystems.
I hope it helps you.
<u>Answer:</u> The amount of heat released is 56 MJ.
<u>Explanation:</u>
To calculate the number of moles, we use the equation:
Given mass of
= 12 kg = 12000 g (Conversion factor: 1 kg = 1000 g)
Molar mass of
= 30 g/mol
Putting values in above equation, we get:

The chemical reaction for hydrogenation of ethene follows the equation:

By Stoichiometry of the reaction:
When 1 mole of ethane releases 140 kJ of heat.
So, 400 moles of ethane will release =
of heat.
Converting this into Mega joules, using the conversion factor:
1 MJ = 1000 kJ
So, 
Hence, the amount of heat released is 56 MJ.
answer: 3g. 17kg+3 ÷ 0.25
Answer:
Density: The molecules of a liquid are packed relatively close together. Consequently, liquids are much denser than gases. The density of a liquid is typically about the same as the density of the solid state of the substance.
In a gas, the distance between molecules, whether monatomic or polyatomic, is very large compared with the size of the molecules; thus gases have a low density and are highly compressible. In contrast, the molecules in liquids are very close together, with essentially no empty space between them
I hope it helps you
Answer:
- <em>The solution expected to contain the greatest number of solute particles is: </em><u>A) 1 L of 1.0 M NaCl</u>
Explanation:
The number of particles is calculated as:
a) <u>For Ionic compounds</u>:
- molarity × volume in liters × number of ions per unit formula.
b) <u>For covalent compounds</u>:
- molarity × volume in liters
The difference is a factor which is the number of particles resulting from the dissociation or ionization of one mole of the ionic compound.
So, calling M the molarity, you can write:
- # of particles = M × liters × factor
This table show the calculations for the four solutions from the list of choices:
Compound kind Particles in solution Molarity # of particles
(dissociation) (M) in 1 liter
A) NaCl ionic ions Na⁺ and Cl⁻ 1.0 1.0 × 1 × 2 = 2
B) NaCl ionic ions Na⁺ anc Cl⁻ 0.5 0.5 × 1 × 2 = 1
C) Glucose covalent molecules 0.5 0.5 × 1 × 1 = 0.5
D) Glucose covalent molecules 1.0 1.0 × 1 × 1 = 1
Therefore, the rank in increasing number of particles is for the list of solutions given is: C < B = D < A, which means that the solution expected to contain the greatest number of solute particles is the solution A) 1 L of 1.0 M NaCl.