Answer:
3.65 g / ml correct to 3 sig. fig.
Explanation:
The computation of the concentration required is shown below:
As we know that
[A] = mass of solute ÷ volume of solution
Before that first find the mass of solute
Given that
Initial weight = 5.55g
And,
Final weight = 92.7 g
So,
Mass of KCl is
= 92.7 - 5.55
= 87.15 g ~ 87.2 g
Now the KCi is fully dissolved, so the volume is 23.9 ml
So, concentration is
= 87.2 g ÷ 23.9 ml
= 3.65 g / ml correct to 3 sig. fig.
Answer:
B. Decreasing the pressure applied to the gas molecules
Explanation:
According to Boyle's Law, the pressure of the gas is inversely proportional to the volume of the gas. So, the option B is correctly implied to it.
Other values such as Temperature, Number of molecules are inversely proportional to the volume of the gas.
Size of the gas molecules is negligible as compared to volume.
Answers-in-bold:
There are two common temperature scales. On the Fahrenheit scale, water freezes at 32 degrees. The Celsius scale divides the interval between the freezing and boiling points of water into 100 degrees.
Answer:

for the balanced equation
