The concentration of ClO₂⁻ at equilibrium if the initial concentration of HClO₂ is 0.0654.
<h3>What is concentration?</h3>
The concentration of any substance is the quantity of that substance in per square of the space or container.
The reaction is
HClO₂ + H₂O <=> H₃O⁺ + ClO₂⁻
The pH is 0.454 M
Ka = [H₃O⁺][ClO₂⁻ ] / [HClO₂]
2. 25 × 10⁻² m = [x][x] / 0.454-x]
2 + 0.011 - 0.004994 = 0
solve the quadratic equation
x = 0.0654 = [H3O+] = [ClO2-]
pH = -log (H3O+)
pH = -log(0.0654)
pH = 1.2
equilibrium concentrations of
[HClO2] = 0.454 -x = 0.454 -0.0654 = 0.3886 M
[ClO2- ] = x = 0.0654
Thus, the equilibrium concentrations is 0.0654.
To learn more about concentration, refer to the link:
brainly.com/question/16645766
#SPJ4
<u>Answer:</u> The temperature of the system is 273 K
<u>Explanation:</u>
To calculate the number of moles, we use the equation:
Given mass of carbon dioxide = 1 lb = 453.6 g (Conversion factor: 1 lb = 453.6 g)
Molar mass of carbon dioxide = 44 g/mol
Putting values in above equation, we get:

To calculate the temperature of gas, we use the equation given by ideal gas equation:
PV = nRT
where,
P = Pressure of carbon dioxide = 200 psia = 13.6 atm (Conversion factor: 1 psia = 0.068 atm)
V = Volume of carbon dioxide =
(Conversion factor:
)
n = number of moles of carbon dioxide = 10.31 mol
R = Gas constant = 
T = temperature of the system = ?
Putting values in above equation, we get:

Hence, the temperature of the system is 273 K
Answer:
PbMg
Explanation:
Because they both have a charge of 2+, they can be reduced and cancel each other out because 2 and 2 can be reduced to 1
Answer:
1,31÷2 =10,11
Explanation:
c10h22+31÷2o2=10co2+11h2o