Well the organism that is producing an offspring is already very adapted to it's surroundings. So, the organism has developed characteristics that help it survive in it's environment. These traits are passed down to the offspring. Creating adaptations to this particular species.
Answer:
-290KJ/mol
Explanation:
ΔHrxn = ΔHproduct - ΔHreactant
ΔHrxn= 4ΔHH3PO4 - {6ΔHH2O + ΔHP4O10}
ΔHrxn = 4(-1279) - [6(-286) - 3110]
= -5116 -(-1716-3110)
= -5116-(-4826)
= -5116 + 4826 = -290KJ/mol
Answer:
True
Explanation:
The evidence for evolution is found at all levels of organization in living things and in the extinct species we know about through fossils.
To obey the Law of Conservation of Mass, the sum of all individual elements of a compound is equal to the mass of the compound. So, if HCN has a mass of 7.83 grams, then
7.83 g = mass of H + mass of C + mass of N
We know the masses of H and N to be 0.290 g and 4.06 g, respectively. Hence, we can find for the mass of C:
7.83 = 0.29 + mass of C + 4.06
mass of C = 3.48 g
As an extension to the Law of Conservation of Mass, there is also a Law of Definite Proportions. According to Dalton's atomic theory, a compound is formed from a fixed ratio of its individual elements. From our previous calculations, we know that the mass ratio of H to C to N is 0.29 g: 3.48 g:4.06 grams. The ratio could also be expressed in percentages. Let's find the mass percentage of Carbon in HCN to be used later:
mass % of Carbon = (3.48 g/7.83 g)*100
mass % of Carbon = 44.44%
So, if you collect a different mass of HCN, say 3.37 g, the corresponding mass of Carbon is equal to:
Mass of Carbon = (3.37)(44.44%)
Mass of Carbon = 1.498 g