1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
torisob [31]
3 years ago
5

Line AB contains points A (0, 0) and B (2, 2). Line CD contains points C (3, 1) and D (5, 3). Lines AB and CD are

Mathematics
2 answers:
suter [353]3 years ago
6 0
Since the slopes are equal they are parallel. I hope this helps.
aleksandrvk [35]3 years ago
3 0

Answer:

Slope of Both the lines AB and CD are same that is lines are parallel.

Step-by-step explanation:

We have been given Ab A(0,0) and B(2,2)

And C(3,1) and D(5,3)

We will find slope of the two lines given

By using :slope=\frac{y_2-y_1}{x_2-x_1}

\text{Slope of AB}=\frac{2-0}{2-0}

\text{Slope of AB}=1

Now, for CD:

\text{Slope of CD}=\frac{3-1}{5-3}

\Rightarrow \text{Slope of CD}=1

Slope of Both the lines AB and CD are same that is lines are parallel.

You might be interested in
Simplify this algebra expression:<br><br> 6j-2j-2j+8+9+6e+5
ELEN [110]

Answer:

6j-2j-2j+8+9+6e+5

= 6j - 4j + 6e + 24

= 2j + 6e + 24

8 0
2 years ago
Read 2 more answers
What would be the answer to g+3=17
andrew-mc [135]

Answer:

g = 14

Step-by-step explanation:

g + 3 = 17

minus 3 from both sides

g = 14

8 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
Convert the following degree measure to radian measure 30 degrees
insens350 [35]

Step-by-step explanation:

given 30°

converting into radian measure

= 30 * π / 180

= π / 6

6 0
4 years ago
Read 2 more answers
A dessert recipe calls for 6 cups of cereal for every 4 cups of marshmallows. If a baker makes a 25-cup batch of treats using th
Elden [556K]

Answer:  c

Step-by-step explanation:

5 0
2 years ago
Other questions:
  • Can someone help me please
    15·1 answer
  • Find the missing value so that the two points have a slope of -3/10 (x,-8) and (-5,-5)
    15·1 answer
  • Each leg of a 45-45-90 triangle has a length of 6 units. What is the length of its hypotenuse?
    11·1 answer
  • My dog weighed 60 pounds and lost 25% of his weight.how much did he lose
    7·2 answers
  • What is the measure of an exterior angle of a regular hexagon
    13·2 answers
  • Who goes to lamar county schools?
    14·1 answer
  • What is the solutions to the equation 5a^2-44=81?
    15·2 answers
  • <img src="https://tex.z-dn.net/?f=3%2F5%20of%205%2F9%5C%5C" id="TexFormula1" title="3/5 of 5/9\\" alt="3/5 of 5/9\\" align="absm
    8·2 answers
  • Write an equation in slope-intercept form for the line that has a slope of -4/5 and passes through (0, 7).
    10·1 answer
  • the price of an item originally priced at $24 was increased by 15%. what percentage decrease will restore it to its original pri
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!