Answer: The value of
for chloroform is
when 0.793 moles of solute in 0.758 kg changes the boiling point by 3.80 °C.
Explanation:
Given: Moles of solute = 0.793 mol
Mass of solvent = 0.758

As molality is the number of moles of solute present in kg of solvent. Hence, molality of given solution is calculated as follows.

Now, the values of
is calculated as follows.

where,
i = Van't Hoff factor = 1 (for chloroform)
m = molality
= molal boiling point elevation constant
Substitute the values into above formula as follows.

Thus, we can conclude that the value of
for chloroform is
when 0.793 moles of solute in 0.758 kg changes the boiling point by 3.80 °C.
Answer:
20.5torr
Explanation:
Given parameters:
V₁ = 15L
P₁ = 8.2 x 10⁴torr
V₂ = 6 x 10⁴L
Unknown:
P₂ = ?
Solution:
To solve this problem we have to apply the claims of Boyle's law.
Boyle's law is given mathematically as;
P₁ V₁ = P₂V₂
where P₁ is the initial pressure
V₁ is the initial volume
P₂ is final pressure
V₂ is final volume
8.2 x 10⁴ x 15 = P₂ x 6 x 10⁴
P₂ = 20.5torr
Answer:
Germanium and Polonium
Explanation:
Can you please mark me brainliest since I was the first person to answer :p
Answer:lmk when u have the answer
Explanation: