Answer:

Explanation:
Hello,
In this case, we consider that at STP conditions (273 K and 1 atm) we know that the volume of 1 mole of a gas is 22.4 L, thereby, for 83.4 L, the resulting moles are:

This is a case in which we apply the Avogadro's law which relates the volume and the moles as a directly proportional relationship.
Best regards.
Answer:
a. the mole fraction of CO in the mixture of CO and O2.
mole fraction = moles of CO/ Total moles of the mixture
Mole fraction of CO = 10/(10+12.5)=0.444
b. Reaction - CO(g)+½O2(g)→CO2(g)
Stoichiometry: 1 mole of CO react with 0.5mole of O2 to give 1 mole of CO2
So given,
At a certain point in the heating, 3.0 mol CO2 is present. Determine the mole fraction of CO in the new mixture.
3mol of CO2 is produced from 3 mols of CO and 1.5mol of O2
This means that unused mols are : 7mols of CO and 11mols of O2
Total product mixture = 3 + 7 + 11 = 21mols
mole fraction of CO = 7/21 = 0.33
Answer:
B
Explanation:
volume occupied by fixed amount of gas is directly proportional to its absolute temperature.
Secondary growth is important to plants because it involves thickening of the plant axis.It also increased amounts of vascular tissue.
I tried sorry if it’s not worded perfect :)