This is a single replacement reaction. So the final products are a metal and a salt with replaced cation. In this case, the final products are copper (metal) and iron sulfate (salt).
One thing that does not change is the chemical composition of water, which is still H2O. And maybe mass, if all of the particles remain inside the beaker, which was never mentioned in the question so I am not sure.
20600Cal
Explanation:
Given parameters:
Mass of water = 319.5g
Initial temperature = 35.7°C
Final temperature = 100°C
Unknown:
Calories needed to heat the water = ?
Solution:
The calories is the amount of heat added to the water. This can be determined using;
H = m c Ф
c = specific heat capacity of water = 4.186J/g°C
H is the amount of heat
Ф is the change in temperature
H = m c (Ф₂ - Ф₁)
H = 319.5 x 4.186 x (100 - 35.7) = 85996.56J
Now;
1kilocalorie = 4184J
85996.56J to kCal;
= 20.6kCal = 20600Cal
learn more:
Specific heat brainly.com/question/3032746
#learnwithBrainly
1 mole contains = 6.02x10^23 atoms. 0.31mole contains = 0.31x6.02x10^23 = 1.8662x10^23.
C) It contains the same number of electrons and protons.