Explanation:
What is the base name for the following compound? C-C=0. Add answer+5 pts. Log in to add comment.
Answer:
6.25 moles of N₂ is produced, and 18.8 moles of Cu and H₂O is produced.
Explanation:
We are given the chemical equation:

And we want to determine the amount of products produced when 12.5 moles of NH₃ is reacted with excess CuO.
Compute using stoichiometry. From the equation, we can see the following stoichiometric ratios:
- The ratio between NH₃ and N₂ is 2:1. (i.e. One mole of N₂ is produced from every two moles of NH₃.)
- The ratio between NH₃ and Cu is 2:3.
- The ratio between NH₃ and H₂O is 2:3. (i.e. Three moles of H₂O or Cu is produced frome every two moles of NH₃.)
Dimensional Analysis:
- The amount of N₂ produced:

- The amount of Cu produced:

- And the amount of H₂O produced:

In conclusion, 6.25 moles of N₂ is produced, and 18.8 moles of Cu and H₂O is produced.
The answer is O2.
The ionic charge of something can be determined by it's place in the periodic table.
Carbohydrates are biological molecules made of carbon, hydrogen, and oxygen in a ratio of roughly one carbon atom (
C
Cstart text, C, end text) to one water molecule (
H
2
O
H
2
Ostart text, H, end text, start subscript, 2, end subscript, start text, O, end text). This composition gives carbohydrates their name: they are made up of carbon (carbo-) plus water (-hydrate). Carbohydrate chains come in different lengths, and biologically important carbohydrates belong to three categories: monosaccharides, disaccharides, and polysaccharides.
Answer:
a) equilibrium shifts towards the right
b) equilibrium shifts towards the right
c) equilibrium shifts towards the left
d) has no effect on equilibrium position
e) has no effect on equilibrium position
Explanation:
A reversible reaction may attain equilibrium in a closed system. A chemical system is said to be in a state of dynamic equilibrium when the rate of forward reaction is equal to the rate of reaction.
According to Le Chateliers principle, when a constraint such as a change in temperature, pressure, volume or concentration is imposed upon a system in equilibrium, the equilibrium position shifts in such a way as to annul the constraint.
When the concentration of reactants is increased, the equilibrium position is shifted towards the right hand side and more products are formed. For an endothermic reaction, the reverse reaction is favoured by a decrease in temperature. Increase in pressure has no effect on the system since there are equal volumes on both sides of the reaction equation. Similarly, the addition of a catalyst has no effect on the equilibrium position since it speeds up both the forward and reverse reactions to the same extent.