100/2.5 is 40.
40 is the energy that is being produced
<span>The same amount of pressure is exerted on all sides of the object equally.
If you had 13 psi, then that means on the top of the object, 13 psi would be pushing in on the object. From the bottom, 13 psi would be pushing up on the object.
Same goes for all the sides as well. The pressure pushes 'in' on the object.</span>
Answer:
i) E = 269 [MJ] ii)v = 116 [m/s]
Explanation:
This is a problem that encompasses the work and principle of energy conservation.
In this way, we establish the equation for the principle of conservation and energy.
i)

![W_{1-2}= (F*d) - (m*g*h)\\W_{1-2}=(500000*2.5*10^3)-(40000*9.81*2.5*10^3)\\W_{1-2}= 269*10^6[J] or 269 [MJ]](https://tex.z-dn.net/?f=W_%7B1-2%7D%3D%20%28F%2Ad%29%20-%20%28m%2Ag%2Ah%29%5C%5CW_%7B1-2%7D%3D%28500000%2A2.5%2A10%5E3%29-%2840000%2A9.81%2A2.5%2A10%5E3%29%5C%5CW_%7B1-2%7D%3D%20269%2A10%5E6%5BJ%5D%20or%20269%20%5BMJ%5D)
At that point the speed 1 is equal to zero, since the maximum height achieved was 2.5 [km]. So this calculated work corresponds to the energy of the rocket.
Er = 269*10^6[J]
ii ) With the energy calculated at the previous point, we can calculate the speed developed.
![E_{k2}=0.5*m*v^2\\269*10^6=0.5*40000*v^2\\v=\sqrt{\frac{269*10^6}{0.5*40000} }\\ v=116[m/s]](https://tex.z-dn.net/?f=E_%7Bk2%7D%3D0.5%2Am%2Av%5E2%5C%5C269%2A10%5E6%3D0.5%2A40000%2Av%5E2%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B269%2A10%5E6%7D%7B0.5%2A40000%7D%20%7D%5C%5C%20v%3D116%5Bm%2Fs%5D)