A force is a push or pull to an object
Answer:
(a) the electrical power generated for still summer day is 1013.032 W
(b)the electrical power generated for a breezy winter day is 1270.763 W
Explanation:
Given;
Area of panel = 2 m × 4 m, = 8m²
solar flux GS = 700 W/m²
absorptivity of the panel, αS = 0.83
efficiency of conversion, η = P/αSGSA = 0.553 − 0.001 K⁻¹ Tp
panel emissivity , ε = 0.90
Apply energy balance equation to determine he electrical power generated;
transferred energy + generated energy = 0
(radiation + convection) + generated energy = 0
![[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - \eta \alpha_s G_s = 0](https://tex.z-dn.net/?f=%5B%5Calpha_sG_s-%5Cepsilon%20%5Calpha%28T_p%5E4-T_s%5E4%29%5D-h%28T_p-T_%5Cinfty%29%20-%20%5Ceta%20%5Calpha_s%20G_s%20%3D%200)
![[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - (0.553-0.001T_p)\alpha_s G_s](https://tex.z-dn.net/?f=%5B%5Calpha_sG_s-%5Cepsilon%20%5Calpha%28T_p%5E4-T_s%5E4%29%5D-h%28T_p-T_%5Cinfty%29%20-%20%280.553-0.001T_p%29%5Calpha_s%20G_s)
(a) the electrical power generated for still summer day

![[0.83*700-0.9*5.67*10^{-8}(T_p_1^4-308^4)]-10(T_p_1-308) - (0.553-0.001T_p_1)0.83*700 = 0\\\\3798.94-5.103*10^{-8}T_p_1^4 - 9.419T_p_1 = 0\\\\Apply \ \ iteration \ method \ to \ solve \ for \ T_p_1\\\\T_p_1 = 335.05 \ k](https://tex.z-dn.net/?f=%5B0.83%2A700-0.9%2A5.67%2A10%5E%7B-8%7D%28T_p_1%5E4-308%5E4%29%5D-10%28T_p_1-308%29%20-%20%280.553-0.001T_p_1%290.83%2A700%20%3D%200%5C%5C%5C%5C3798.94-5.103%2A10%5E%7B-8%7DT_p_1%5E4%20-%209.419T_p_1%20%3D%200%5C%5C%5C%5CApply%20%5C%20%20%5C%20iteration%20%5C%20method%20%5C%20to%20%5C%20solve%20%5C%20for%20%5C%20T_p_1%5C%5C%5C%5CT_p_1%20%3D%20335.05%20%5C%20k)

(b)the electrical power generated for a breezy winter day

![[0.83*700-0.9*5.67*10^{-8}(T_p_2^4-258^4)]-10(T_p_2-258) - (0.553-0.001T_p_2)0.83*700 = 0\\\\8225.81-5.103*10^{-8}T_p_2^4 - 29.419T_p_2 = 0\\\\Apply \ \ iteration \ method \ to \ solve \ for \ T_p_2\\\\T_p_2 = 279.6 \ k](https://tex.z-dn.net/?f=%5B0.83%2A700-0.9%2A5.67%2A10%5E%7B-8%7D%28T_p_2%5E4-258%5E4%29%5D-10%28T_p_2-258%29%20-%20%280.553-0.001T_p_2%290.83%2A700%20%3D%200%5C%5C%5C%5C8225.81-5.103%2A10%5E%7B-8%7DT_p_2%5E4%20-%2029.419T_p_2%20%3D%200%5C%5C%5C%5CApply%20%5C%20%20%5C%20iteration%20%5C%20method%20%5C%20to%20%5C%20solve%20%5C%20for%20%5C%20T_p_2%5C%5C%5C%5CT_p_2%20%3D%20279.6%20%5C%20k)

Answer:
"where crests and troughs have their maxima at the same time"
Crests and troughs are 180 deg out of phase and when they have their maxima at the same time and place, their net contribution will be zero"
Answer:43.34 m
Explanation:
Given
acceleration(a)
Initial Velocity(u)=0 m/s
After 6 s fuel runs out
Velocity after 6 s
v=u+at

After this object will start moving under gravity
height reached in first 6 s


s=36 m
After fuel run out distance traveled in upward direction is

here v=0
u=12 m/s



