To solve this problem it is necessary to apply the concepts related to Dopler's Law. Dopler describes the change in frequency of a wave in relation to that of an observer who is in motion relative to the Source of the Wave.
It can be described as

c = Propagation speed of waves in the medium
= Speed of the receiver relative to the medium
= Speed of the source relative to the medium
Frequency emited by the source
The sign depends on whether the receiver or the source approach or move away from each other.
Our values are given by,
Velocity of car
velocity of motor
Velocity of sound
Frequency emited by the source
Replacing we have that



Therefore the frequency that hear the motorcyclist is 601.7Hz
Answer:
18.24 seconds
Explanation:
First you convert the km/h to m/s, 70km/h=(175/9)m/s,85km/h=(425/18)m/s.
You know it took 10 seconds for the police to reach 85 km/h. Calculate the distance that the car is ahead of the police (175/9)*10=1750/9m. Then by divide 1750/9 with 425/18, you will get the value 8.24. Add the 10 seconds with the 8.24 you will get 18.24 sec which is the total time.
Using the formula KE=1/2mv^2
a: The kinetic energy doubles.
b: The kinetic energy quadruples.
c: The kinetic energy is cut in half.
Hopefully it’s clear how the formula can show you this.