The time it takes for the Moon to rotate once around its axis is equal to the time it takes for the Moon to orbit once around Earth
Answer:
25°C
Explanation:
Using the linear expansivity formula expressed as;
∝ = ΔL/lΔθ
∝ is coefficient of lineat expansion = 1.2 ∙ 10⁻⁵ °C⁻¹
ΔL is the change in length = 6.00036-6
ΔL = 0.00036m
l is the original length = 6m
Δθ is the change in temperature =θ₂-20
Substituting into the formula;
1.2 ∙ 10⁻⁵ °C⁻¹ = 0.00036/6(θ₂-20)
cross multiply
1.2 ∙ 10⁻⁵ * 6 = 0.00036/(θ₂-20)
7.2 ∙ 10⁻⁵= 0.00036/(θ₂-20)
0.00036 = 7.2 ∙ 10⁻⁵(θ₂-20)
0.00036 = 7.2 ∙ 10⁻⁵θ₂-144∙ 10⁻⁵
7.2 ∙ 10⁻⁵θ₂ = 0.00036+0.00144
7.2 ∙ 10⁻⁵θ₂ = 0.0018
θ₂ = 0.0018/0.000072
θ₂ = 25°C
Hence the temperature at which this bar must be acidic for its compression is 6,00036 m is 25°C
Answer:
0.49 m/s
Explanation:
The law of conservation of linear momentum states that the sum of momentum in a system before and after collision are same. Momentum is a product of mass and velocity of an object hence in this case

Where m represent mass, u and v represent the initial and final velocities respectively, subscripts c and 8 represent cue ball and number 8 ball respectively.
Since number 8 ball is initially at rest, its initial velocity is zero. Replacing mass of cue ball with 170 g while mass of number 8 ball with 160g, then taking final velocity of cue ball as 0.2 m/s and final velocity of 8 ball as 0.3 m/s then we get

Answer:
Explanation:
We shall represent speed in vector form
First speed
v₁ = 1.5 cos 14 i + 1.5 sin 14 j
= 1.455 i + 0.363 j
v₂ = 4.4 cos 33 i + 4.4 sin 33 j
= 3.69 i + 2.39 j
v₂ - v₁
3.69 i + 2.39 j - 1.455 i - 0.363 j
= 2.235 i + 2.027 j
acceleration
= v₂ - v₁ / time
= ( 2.235 i + 2.027 j ) / 23
= .097 i + .088 j
force = mass x acceleration
= 398 x ( .097 i + .088 j )
= 38.6 i + 35.02 j
Magnitude of force F
F² = 38.6² + 35.02²
F = 52.11 N
Tan θ = 35.02 / 38.6
θ = 42° north of east.
That could be an electromagnet,
and it could also be an solenoid.