1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dahasolnce [82]
3 years ago
13

What is this equation equal -4x+3x=2

Mathematics
1 answer:
Zarrin [17]3 years ago
5 0

Answer:

x=2

Step-by-step explanation:

You might be interested in
Simplify 9 - {x - (7 + x)}.
LekaFEV [45]

9 - (x - 7 - x) \\ 9 - ( - 7) \\ 9 + 7 \\  = 16
4 0
3 years ago
A shipping container will be used to transport several 40-kilogram crates across the
Aliun [14]
25500-10900=40x
14600=40x
x=365
3 0
3 years ago
Can somebody help me out?
My name is Ann [436]

Answer:

D

Step-by-step explanation:


6 0
3 years ago
PLEASE HELP ASAP I WILL MARK BRAINLIEST IF MULTIPLE ANSWERS!!!
Llana [10]
Yes, they both are rectangles
In order for a shape to be similar they have to have their corresponding angles congruent, and have the ratio of lengths of their corresponding sides be equal
6 0
3 years ago
Please help me with the below question.
Alexus [3.1K]

a) Substitute y=x^9 and dy=9x^8\,dx :

\displaystyle \int x^8 \cos(x^9) \, dx = \frac19 \int 9x^8 \cos(x^9) \, dx \\\\ = \frac19 \int \cos(y) \, dy \\\\ = \frac19 \sin(y) + C \\\\ = \boxed{\frac19 \sin(x^9) + C}

b) Integrate by parts:

\displaystyle \int u\,dv = uv - \int v \, du

Take u = \ln(x) and dv=\frac{dx}{x^7}, so that du=\frac{dx}x and v=-\frac1{6x^6} :

\displaystyle \int \frac{\ln(x)}{x^7} \, dx = -\frac{\ln(x)}{6x^6} + \frac16 \int \frac{dx}{x^7} \\\\ = -\frac{\ln(x)}{6x^6} + \frac1{36x^6} + C \\\\ = \boxed{-\frac{6\ln(x) + 1}{36x^6} + C}

c) Substitute y=\sqrt{x+1}, so that x = y^2-1 and dx=2y\,dy :

\displaystyle \frac12 \int e^{\sqrt{x+1}} \, dx = \frac12 \int 2y e^y \, dy = \int y e^y \, dy

Integrate by parts with u=y and dv=e^y\,dy, so du=dy and v=e^y :

\displaystyle \int ye^y \, dy = ye^y - \int e^y \, dy = ye^y - e^y + C = (y-1)e^y + C

Then

\displaystyle \frac12 \int e^{\sqrt{x+1}} \, dx = \boxed{\left(\sqrt{x+1}-1\right) e^{\sqrt{x+1}} + C}

d) Integrate by parts with u=\sin(\pi x) and dv=e^x\,dx, so du=\pi\cos(\pi x)\,dx and v=e^x :

\displaystyle \int \sin(\pi x) \, e^x \, dx = \sin(\pi x) \, e^x - \pi \int \cos(\pi x) \, e^x \, dx

By the fundamental theorem of calculus,

\displaystyle \int_0^1 \sin(\pi x) \, e^x \, dx = - \pi \int_0^1 \cos(\pi x) \, e^x \, dx

Integrate by parts again, this time with u=\cos(\pi x) and dv=e^x\,dx, so du=-\pi\sin(\pi x)\,dx and v=e^x :

\displaystyle \int \cos(\pi x) \, e^x \, dx = \cos(\pi x) \, e^x + \pi \int \sin(\pi x) \, e^x \, dx

By the FTC,

\displaystyle \int_0^1 \cos(\pi x) \, e^x \, dx = e\cos(\pi) - 1 + \pi \int_0^1 \sin(\pi x) \, e^x \, dx

Then

\displaystyle \int_0^1 \sin(\pi x) \, e^x \, dx = -\pi \left(-e - 1 + \pi \int_0^1 \sin(\pi x) \, e^x \, dx\right) \\\\ \implies (1+\pi^2) \int_0^1 \sin(\pi x) \, e^x \, dx = 1 + e \\\\ \implies \int_0^1 \sin(\pi x) \, e^x \, dx = \boxed{\frac{\pi (1+e)}{1 + \pi^2}}

e) Expand the integrand as

\dfrac{x^2}{x+1} = \dfrac{(x^2 + 2x + 1) - (2x+1)}{x+1} = \dfrac{(x+1)^2 - 2 (x+1)  + 1}{x+1} \\\\ = x - 1 + \dfrac1{x+1}

Then by the FTC,

\displaystyle \int_0^1 \frac{x^2}{x+1} \, dx = \int_0^1 \left(x - 1 + \frac1{x+1}\right) \, dx \\\\ = \left(\frac{x^2}2 - x + \ln|x+1|\right)\bigg|_0^1 \\\\ = \left(\frac12-1+\ln(2)\right) - (0-0+\ln(1)) = \boxed{\ln(2) - \frac12}

f) Substitute e^{7x} = \tan(y), so 7e^{7x} \, dx = \sec^2(y) \, dy :

\displaystyle \int \frac{e^{7x}}{e^{14x} + 1} \, dx = \frac17 \int \frac{\sec^2(y)}{\tan^2(y) + 1} \, dy \\\\ = \frac17 \int \frac{\sec^2(y)}{\sec^2(y)} \, dy \\\\ = \frac17 \int dy \\\\ = \frac y7 + C \\\\ = \boxed{\frac17 \tan^{-1}\left(e^{7x}\right) + C}

8 0
2 years ago
Other questions:
  • if a cylinder has a volume of approximately 125.6 cubic cm and has a height of 10cm what is the length of the radius
    11·1 answer
  • 30 POINTS AND BRAINLIEST PLEASE HELP!!! Dogs in the GoodDog Obedience School win a blue ribbon for learning how to sit, a green
    15·1 answer
  • You are spreading fertilizer on a golf course at the rate of 40 pounds per 10,000 square feet. If the course is 320 acres, how m
    9·2 answers
  • Jay gets a haircut each month. He always leaves the barber a tip that equals a percent of the total bill. write an equation that
    11·2 answers
  • Witch number are irrational <br><br> A.11<br> B.0151155111555...<br> C.-14<br> D.5/7<br> E.(9.4)
    12·2 answers
  • A function has the rule y = -2x + 11. Which of the following ordered pairs represents an input of 4 and its output?
    13·1 answer
  • Help me pls i want to pass my math class
    5·1 answer
  • Find the slope and the y intercept of the line
    5·1 answer
  • Pls help me in this question
    10·1 answer
  • What is the slope of the following table?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!