1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elodia [21]
3 years ago
9

A 13.8 kg block and a 25.5 kg block are resting on a horizontal frictionless surface. between the two is squeezed a spring (spri

ng constant = 1131 n/m). the spring is compressed by 0.164 m from its unstrained length and is not attached permanently to either block. with what speed does each block move away when the mechanism keeping the spring squeezed is released and the spring falls away?
Physics
1 answer:
raketka [301]3 years ago
4 0
Some dogs may inherit a susceptibility to epilepsy.

You might be interested in
A man 6 feet tall walks at a rate of 6 feet per second away from a light that is 15 feet above the ground.
Tems11 [23]

Answer:(a)10 ft/s

(b)4 ft/s

Explanation:

Given

height of light =15 feet

height of man=6 feet

\frac{\mathrm{d} x}{\mathrm{d} t}=6 ft/s

From diagram

\frac{15}{y}=\frac{6}{y-x}

5(y-x)=2y

3y=5x

differentiate both sides

3\times \frac{\mathrm{d} y}{\mathrm{d} t}=5\times \frac{\mathrm{d} x}{\mathrm{d} t}

Tip of shadow is moving at the rate of

\frac{\mathrm{d} y}{\mathrm{d} t}=\frac{5}{3}\times 6=10 ft/s

(b)rate at which length of his shadow  is changing

Length of shadow is y-x

differentiating w.r.t time

\frac{\mathrm{d} (y-x)}{\mathrm{d} t}=\frac{\mathrm{d} y}{\mathrm{d} t}-\frac{\mathrm{d} x}{\mathrm{d} t}

\frac{\mathrm{d} (y-x)}{\mathrm{d} t}=10-6=4 ft/s

7 0
3 years ago
What part of the water is affected by a wave in deep water
krok68 [10]
Wave base is the most affected by a wave in deep water. :]
5 0
3 years ago
What's the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmi
Murrr4er [49]

Complete Question:

The Voyager 1 spacecraft is now beyond the outer reaches of our solar system, but earthbound scientists still receive data from the spacecraft s 20-W radio transmitter. Voyager is expected to continue transmitting until about 2025, when it will be some 25 billion km from Earth.

What s the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmitter on Voyager transmits equally in all directions(isotropically).  In fact, the antenna on Voyager focuses the signal in a beam aimed at the earth, so this problem over-estimates the size of the receiving dish needed.

Answer:

d = 2,236 m.

Explanation:

The received power on Earth, can be calculated as the product of the intensity (or power density) times the area that intercepts the power radiated.

As we assume that  the transmitter antenna is ominidirectional, power is spreading out over a sphere with a radius equal to the distance to the source.

So, we can get the power density as follows:

I = P /A = P / 4*π*r², where P = 20 W, and r= 25 billion km = 25*10¹² m.

⇒ I = 20 W / 4*π* (25*10¹²)² m²

The received power, is just the product of this value times the area of the receiver antenna, which we assumed be a circle of diameter d:

Pr = I. Ar =( 20W / 4*π*(25*10¹²)² m²) * π * (d²/4) = 10⁻²⁰ W

Simplifying common terms, we can solve for d:

d= √(16*(25)²*10⁴/20) = 2,236 m.

3 0
3 years ago
A 9-μC positive point charge is located at the origin and a 6 μC positive point charge is located at x = 0.00 m, y = 1.0 m. Find
sukhopar [10]

Answer:

The coordinates of the point is (0,0.55).

Explanation:

Given that,

First charge q_{1}=9\times10^{-6}\ C at origin

Second charge q_{2}=6\times10^{-6}\ C

Second charge at point P = (0,1)

We assume that,

The net electric field between the charges is zero at mid point.

Using formula of electric field

E=\dfrac{kq}{r^2}

0=\dfrac{k\times9\times10^{-6}}{d^2}+\dfrac{k\times6\times10^{-6}}{(1-d)^2}

\dfrac{(1-d)}{d}=\sqrt{\dfrac{6}{9}}

\dfrac{1}{d}=\dfrac{\sqrt{6}}{3}+1

\dfrac{1}{d}=1.82

d=\dfrac{1}{1.82}

d=0.55\ m

Hence, The coordinates of the point is (0,0.55).

3 0
3 years ago
A 72.8-kg swimmer is standing on a stationary 265-kg floating raft. The swimmer then runs off the raft horizontally with a veloc
nalin [4]

Answer:

-1.43 m/s relative to the shore

Explanation:

Total momentum must be conserved before and after the run. Since they were both stationary before, their total speed, and momentum, is 0, so is the total momentum after the run off:

m_sv_s + m_rv_r = 0

where m_s = 72.8, m_r = 265 are the mass of the swimmer and raft, respectively. v_s = 5.21 m/s, v_r are the velocities of the swimmer and the raft after the run, respectively. We can solve for v_r

265v_r + 72.8*5.21 = 0

v_b = -72.8*5.21/265 = -1.43 m/s

So the recoil velocity that the raft would have is -1.43 m/s after the swimmer runs off, relative to the shore

7 0
3 years ago
Other questions:
  • A rectangular aluminum bar (~1.52.1 cm in cross section) and a circular steel rod (~1 cm in radius) are each subjected to an axi
    8·1 answer
  • A mans walks 200 meter on 20 seconds. What is the man speed?
    9·2 answers
  • The 2-kg spool s fits loosely on the inclined rod forwhich the coefficient of static friction is s= 0.2. if thespool is located
    5·1 answer
  • Who is Rachel Carson and why is she important to environmentalism
    9·1 answer
  • When a weather map shows a wind symbol at 270 it indicates that the wind is coming from the?
    7·1 answer
  • A baseball bat could be considered a uniform rod. It ha a mass of 0.97 kg and a length of 97 cm. If a player accelerates it from
    12·2 answers
  • Does a rolling basketball have kinetic energy
    6·2 answers
  • Please help need answer asp
    14·2 answers
  • Evelyn meets her friends at a local restaurant 5 km away. Afterwards she stops at the post office which is another 3 km away, bu
    11·1 answer
  • 1. Stored energy or energy due to position is known as ____________________ energy
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!