Calm, sunny days with wind moving away from the center.
The gravitational constant was experimentally measured by W Cavendish using the attraction between big and small lead balls. is true
The correct answer is true
<h3>How do you define gravitational constant?</h3>
the strength of gravity. a factor in use in Newton's gravity law to relate the strength of the gravitational pull between two bodies with their masses and distance from one another. 6.67259 X 10-11 newtons per square kilogram is roughly the gravitational constant. G is its identifier.
<h3> where is the strongest gravity is?</h3>
The gravitational pull of the earth is greatest near sea level, normally, and weakens as you get further from the center, such as to the summit of Mt. Everest. Because the obloid earth was slightly wider, but only by a minor ratio, the gravity just at poles is stronger than that at the equator.
To know more about gravitational constant visit:
brainly.com/question/858421
#SPJ9
Answer:
Moment of inertia = 0.3862kg-m²
Explanation:
2.00x10³
2.80cm
145 rad
r = r⊥ x F
F is an applied force
r⊥ is the distance between the applied force and axis
Force exerted = 2.00x10³
r⊥ = 2.8cm = 0.028m
Alpha = 145rad/s²
r = 0.028m x 2.00x10³
r = 56.0N-m
To get the moment of inertia
56.0N-m² = (145rad/s²) x I
The I would be:
I = (56.0N-m²)/(145rad/s²)
I = 56/145
= 0.3862Kg-m²
This is the moment of inertia.
Thank you!
Answer:
1531 m
Explanation:
The motion of the jet ski is an uniformly accelerated motion, so we can find the distance travelled by using the following suvat equation:

where
s is the distance
u is the initial velocity
t is the time
a is the acceleration
For the jet ski in this problem,

t = 35 s
u = 0 (it starts from rest)
Solving for s, we find the distance travelled:
