in this since your volume remains at a constant you'll need to use Gay-Lussacs law, p1/t1=p2/t2.
your temp should be converted in kelvin
variables:
p1=3.0×10^6 n/m^2
t1= 270k
just add 273 to your celcius
p2= ? your solving for this
t2= 315k
then you set up the equation
(3.0×10^6)/270= (x)(315)
you then cross multiply
(3.0×10^6)315=270x
distribute the 315 to the pressure.
9.45×10^8=270x then you divide 270 o both sides to get
answer
3.5×10^6 n/m^2
Answer:
230.4 N
Explanation:
From the question given above, the following data were obtained:
Charge (q) of each protons = 1.6×10¯¹⁹ C
Distance apart (r) = 1×10¯¹⁵ m
Force (F) =?
NOTE: Electric constant (K) = 9×10⁹ Nm²/C²
The force exerted can be obtained as follow:
F = Kq₁q₂ / r²
F = 9×10⁹ × (1.6×10¯¹⁹)² / (1×10¯¹⁵)²
F = 9×10⁹ × 2.56×10¯³⁸ / 1×10¯³⁰
F = 2.304×10¯²⁸ / 1×10¯³⁰
F = 230.4 N
Therefore, the force exerted is 230.4 N
Hello!
Charging by conduction involves the contact of a charged object to a neutral object. Suppose that a positively charged aluminum plate is touched to a neutral metal sphere. The neutral metal sphere becomes charged as the result of being contacted by the charged aluminum plate.
Hope this helped!
Answer:
B) R1 = 6 V and R2 = 6V
Explanation:
In series, both resistors will carry the same current.
that current will be I = V/R = 12 / (10 + 10) = 0.6 A
The voltage drop across each resistor is V = IR = 0.6(10) = 6 V