<h2>Hey there!</h2>
The Force "F" applied on the unit electric charge "q" at a point describes the electric field.
<h3>☆ Formula to find electric charge:</h3>
<h2>Hope it helps </h2>
Answer:
the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
Explanation:
This problem can be solved using the kinematics relations, let's start by finding the final velocity of the acceleration period
v² = v₀² + 2 a₁ x
indicate that the initial velocity is zero
v² = 2 a₁ x
let's calculate
v =
v = 143.666 m / s
now for the second interval let's find the distance it takes to stop
v₂² = v² - 2 a₂ x₂
in this part the final velocity is zero (v₂ = 0)
0 = v² - 2 a₂ x₂
x₂ = v² / 2a₂
let's calculate
x₂ =
x₂ = 573 m
as the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
Answer:
Using g = 9.8: 1.02 kg, Using g = 10: 1 kg
Explanation:
E = mgh
20 = m(9.8)(3 - 1)
20 = 9.8m(2)
20 = 19.6m
m = 1.02 kg
I'm now assuming you may be using a g constant of 10, thus the close integer result, in which case the mass would be exactly 1 kilogram.
Answer: Density
Explanation: Recall Archimedes Principle. There are two forces acting an object submerged in a liquid: the force of gravity and the (opposite directed) force of buoyancy. The buoyancy is proportional to the mass of the liquid displaced by the submerged part of the object.
Density is the ratio of mass to volume. Therefore if the density of the submerged object is higher than that of the displaced liquid, the net force will point in the direction of the gravity (object will sink). In the opposite case, the net force will point in the direction of the buoyant force (upward) and the object will float.