Answer:
![[A]_0=0.400M](https://tex.z-dn.net/?f=%5BA%5D_0%3D0.400M)
Explanation:
Hello.
In this case, since the first-order reaction is said to be linearly related to the rate of reaction:
![r=-k[A]](https://tex.z-dn.net/?f=r%3D-k%5BA%5D)
Whereas [A] is the concentration of hydrogen peroxide, when writing it as a differential equation we have:
![\frac{d[A]}{dt} =-k[A]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3D-k%5BA%5D)
Which integrated is:
![ln(\frac{[A]}{[A]_0} )=-kt](https://tex.z-dn.net/?f=ln%28%5Cfrac%7B%5BA%5D%7D%7B%5BA%5D_0%7D%20%29%3D-kt)
And we can calculate the initial concentration of the hydrogen peroxide as follows:
![[A]_0=\frac{[A]}{exp(-kt)}](https://tex.z-dn.net/?f=%5BA%5D_0%3D%5Cfrac%7B%5BA%5D%7D%7Bexp%28-kt%29%7D)
Thus, for the given data, we obtain:
![[A]_0=\frac{0.321M}{exp(-2.54x10^{-4}s^{-1}*855s)}](https://tex.z-dn.net/?f=%5BA%5D_0%3D%5Cfrac%7B0.321M%7D%7Bexp%28-2.54x10%5E%7B-4%7Ds%5E%7B-1%7D%2A855s%29%7D)
![[A]_0=0.400M](https://tex.z-dn.net/?f=%5BA%5D_0%3D0.400M)
Best regards!
Answer:

Explanation:
Hello,
In this case, since silver is initially hot as it cools down, the heat it loses is gained by the liquid, which can be thermodynamically represented by:

That in terms of the heat capacities, masses and temperature changes turns out:

Since no phase change is happening. Thus, solving for the heat capacity of the liquid we obtain:

Best regards.
Answer:
H²0 is answer is H20 ok please
K(eq) = concentration of products/concentration of reactant = [Cu+2] / [Ag+]^2
Activity of pure solid and liquid is taken as 1.
Hence last option is correct.
Hope this helps, have a great day ahead!
I hope this helps you alot
:)
:)
:0
The difference between the wattage is 60-18=42W. The saving in energy over 10 hrs is 10×42=420 watt-hours=0.42kWh