I looked at the question and there isn't a lot of information. im assuming the answer is carbon dioxide. its the only substance that would make sense I hope it helps.
Stoichiometry time! Remember to look at the equation for your molar ratios in other problems.
31.75 g Cu | 1 mol Cu | 2 mol Ag | 107.9 g Ag 6851.65
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ → ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ = 107.9 g Ag
∅ | 63.5 g Cu | 1 mol Cu | 1 mol Ag 63.5
There's also a shorter way to do this: Notice the molar ratio from Cu to Ag, which is 1:2. When you plug in 31.75 into your molar mass for Cu, it equals 1/2 mol. That also means that you have 1 mol Ag because of the ratio, qhich you can then plug into your molar mass, getting 107.9 as well.
Write out the eqn of magnesium and oxygen. this should be under “metals” chapter. do revise.
next, find the mols of both oxygen and magnesium. compare the ratios and find the LIMITING REAGENT.
use the mols of the limiting reagent to compare with the mols of the product.
take the mols of the product/mr of the product.
this will give u the mass.
To know this you pretty much do have to kind of memorize a few electronegativities. I don't recall ever getting a table of electronegativities on an exam.
From the structure, you have:
I remember the following electronegativities most because they are fairly patterned:
EN
H
=
2.1
EN
C
=
2.5
EN
N
=
3.0
EN
O
=
3.5
EN
F
=
4.0
EN
Cl
=
3.5
Notice how carbon through fluorine go in increments of
~
0.5
. I believe Pauling made it that way when he determined electronegativities in the '30s.
Δ
EN
C
−
Cl
=
1.0
Δ
EN
C
−
H
=
0.4
Δ
EN
C
−
C
=
0.0
Δ
EN
C
−
O
=
1.0
Δ
EN
O
−
H
=
1.4
So naturally, with the greatest electronegativity difference of
4.0
−
2.5
=
1.5
, the
C
−
F
bond is most polar, i.e. that bond's electron distribution is the most drawn towards the more electronegative compound as compared to the rest.
When the electron distribution is polarized and drawn towards a more electronegative atom, the less electronegative atom has to move inwards because its nucleus was previously favorably attracted to the electrons from the other atom.
That means generally, the greater the electronegativity difference between two atoms is, the shorter you can expect the bond to be, insofar as the electronegative atom is the same size as another comparable electronegative atom.
However, examining actual data, we would see that on average, in conditions without other bond polarizations occuring:
r
C
−
Cl
≈
177 pm
r
C
−
C
≈
154 pm
r
C
−
O
≈
143 pm
r
C
−
F
≈
135 pm
r
C
−
H
≈
109 pm
r
O
−
H
≈
96 pm
So it is not necessarily the least electronegativity difference that gives the longest bond.
Therefore, you cannot simply consider electronegativity. Examining the radii of the atoms, you should notice that chlorine is the biggest atom in the compound.
r
Cl
≈
79 pm
r
C
≈
70 pm
r
H
≈
53 pm
r
O
≈
60 pm
So assuming the answer is truly
C
−
C
, what would have to hold true is that:
The
C
−
F
bond polarization makes the carbon more electropositive (which is true).
The now more electropositive carbon wishes to attract bonding pairs from chlorine closer, thereby shortening the
C
−
Cl
bond, and potentially the
C
−
H
bond (which is probably true).
The shortening of the
C
−
Cl
bond is somehow enough to be shorter than the
C
−
C
bond (this is debatable).
Balance each one by adding electrons to make the charges on both sides the same:
Sn--> Sn2+ + 2 e-
Ag+ + 1 e- --> Ag
Now, you have to have the same number of electrons in the two half-reactions, so multiply the second one by 2 to get:
2 Ag+ + 2 e- --> 2 Ag
Now, just add the two half reactions together, cancelling anything that's the same on both sides:
2 Ag+ + Sn --> Sn2+ + 2 Ag
And you're done.