Answer:
The correct option is: B that is 1/2 K
Explanation:
Given:
Two carts of different masses, same force were applied for same duration of time.
Mass of the lighter cart = 
Mass of the heavier cart = 
We have to find the relationship between their kinetic energy:
Let the KE of cart having mass m be "K".
and KE of cart having mass m be "K1".
As it is given regarding Force and time so we have to bring in picture the concept of momentum Δp and find a relation with KE.
Numerical analysis.
⇒
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
Now,
Kinetic energies and their ratios in terms of momentum or impulse.
KE (K) of mass m.
⇒
...equation (i)
KE (K1) of mass 2m.
⇒ 
⇒
...equation (ii)
Lets divide K1 and K to find the relationship between the two carts's KE.
⇒ 
⇒ 
⇒ 
⇒ 
⇒
⇒ 
The kinetic energy of the heavy cart after the push compared to the kinetic energy of the light cart is 1/2 K.
Answer:

Explanation:
When activated, the receptor most likely prompting the production of saliva is the taste receptor. When food enters the mouth, the salivary glands produce the saliva upon the sensation of taste.
All of it until it breaks down into 1 piece
consider the motion in x-direction
= initial velocity in x-direction = ?
X = horizontal distance traveled = 100 m
= acceleration along x-direction = 0 m/s²
t = time of travel = 4.60 sec
Using the equation
X =
t + (0.5)
t²
100 =
(4.60)
= 21.7 m/s
consider the motion along y-direction
= initial velocity in y-direction = ?
Y = vertical displacement = 0 m
= acceleration along x-direction = - 9.8 m/s²
t = time of travel = 4.60 sec
Using the equation
Y =
t + (0.5)
t²
0 =
(4.60) + (0.5) (- 9.8) (4.60)²
= 22.54 m/s
initial velocity is given as
= sqrt((
)² + (
)²)
= sqrt((21.7)² + (22.54)²) = 31.3 m/s
direction: θ = tan⁻¹(22.54/21.7) = 46.12 deg