Answer:
(a) 0.115 m
(b) 2.08 x 10^-5 J
Explanation:
mass of bob, m = 81 g = 0.081 kg
The equation of oscillation is given by
θ = 0.068 Cos {9.2 t + Ф}
Now by comparison
The angular velocity
ω = 9.2 rad/s
(a) 
where, L be the length of the pendulum


L = 0.115 m
(b) A = L Sinθ
A = 0.115 x Sin 0.068
A = 7.8 x 10^-3 m
Maximum kinetic energy
K = 0.5 x mω²A²
K = 0.5 x 0.081 x 9.2 x 9.2 x 7.8 x 7.8 x 10^-6
K = 2.08 x 10^-5 J
Answer:
The answer to A strip of copper metal is placed in an aqueous sodium chloride solution. According to the standard reduction potential below, is Option A) No reaction occurs
Explanation:
Aqueous sodium chloride solution is similar to salt and water mixed together.
Copper doesn’t dissolve in salty water. However, exposure of the metal to air and then to water results in an oxide layer on the surface of copper which is referred: the dull reddish brown copper(I) oxide and this exists in an equilibrium with the outer oxide layer of black copper(II) oxide.
If you put a strip of copper metal is placed in an aqueous sodium chloride solution, you will not observe any reaction because the oxide layer on the surface of copper is too thin for to be noticed other than by a dulling or darkening of the surface, not thick enough to be obvious.
Answer:
1.9kHz
Explanation:
Given data
wavelength 
velocity 
We know that

substitute

Hence the frequency is 1.9kHz
Answer:
It over all density increases and it begins to sink.
Locations of transient high-low pressure systems