1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kow [346]
3 years ago
14

The function x = (5.2 m) cos[(5πrad/s)t + π/5 rad] gives the simple harmonic motion of a body. At t = 5.3 s, what are the (a) di

splacement, (b) velocity, (c) acceleration, and (d) phase of the motion? Also, what are the (e) frequency and (f) period of the motion?
Physics
1 answer:
gulaghasi [49]3 years ago
6 0

Answer:

(a) Displacement = - 3.0576 m

(b) Velocity  =-66.48 m/s

(c)Acceleration   = -753.39 m²/s

(d)The phase motion is 26.7 \pi.

(e)Frequency =2.5 Hz.

(f)Time period =0.4 s

Explanation:

Given function is

x= (5.2 m)cos[ (5\pi \  rad/s)t+ \frac\pi5]

(a)

The displacement includes the parameter t, so,at time t=5.3 s

x|_{t=5.3}= (5.2 m)cos[ (5\pi \  rad/s)5.3+ \frac\pi5]

           = (5.2 m)cos[ 26.5\pi+ \frac\pi5]

           =(5.2)(-0.588)m

           = - 3.0576 m

(b)

x= (5.2 m)cos[ (5\pi \  rad/s)t+ \frac\pi5]

To find the velocity of simple harmonic motion, we need to find out the first order derivative of the function.

v=\frac{dx}{dt}

 =\frac{d}{dt} (5.2 m)cos[ (5\pi \  rad/s)t+ \frac\pi5]

  =  (5.2 m)(-5\pi)sin[ (5\pi \  rad/s)t+ \frac\pi5]

  =  -26\pi sin[ (5\pi \  rad/s)t+ \frac\pi5]

Now we can plug our value t=5.3 into the above equation

v=  -26\pi sin[ (5\pi \  rad/s)5.3\ s+ \frac\pi5]

 =-66.48 m/s

(c)

To find the acceleration of simple harmonic motion, we need to find out the second order derivative of the function.

v=  -26\pi sin[ (5\pi \  rad/s)t+ \frac\pi5]

a=\frac{d^2x}{dt^2}

 =\frac{dv}{dt}

 =\frac{d}{dt}(  -26\pi sin[ (5\pi \  rad/s)t+ \frac\pi5])

 =  -26\pi (5\pi)cos[ (5\pi \  rad/s)t+ \frac\pi5]

 =  -130\pi^2cos[ (5\pi \  rad/s)t+ \frac\pi5]

Now we can plug our value t=5.3 into the above equation

a=  -130\pi^2cos[ (5\pi \  rad/s)5.3 \ s+ \frac\pi5]

  = -753.39 m²/s

(d)

The general equation of SHM is

x=x_mcos(\omega t+\phi)

x_m is amplitude of the displacement, (\omega t+\phi) is phase of motion, \phi is phase constant.

So,

(\omega t+\phi)=5\pi t+\frac\pi5

Now plugging t=5.3s

(\omega t+\phi)=5\pi \times 5.3+\frac\pi5

             =26.7 \pi

The phase motion is 26.7 \pi.

The angular frequency \omega = 5\pi

(e)

The relation between angular frequency and frequency is

\omega =2\pi f

\therefore f=\frac{\omega}{2\pi}

     =\frac{5\pi}{2\pi}

    =\frac52

   = 2.5 Hz

Frequency =2.5 Hz.

(f)

The relation between frequency and time period is

T=\frac1 f

   =\frac1{2.5}

  =0.4 s

Time period =0.4 s

You might be interested in
Space scientists have a large test chamber from which all the air can be evacuated and in which they can create a horizontal uni
nexus9112 [7]

Answer:

the magnitude of the electric force on the projectile is 0.0335N

Explanation:

time of flight t = 2·V·sinθ/g

= (2 * 6.0m/s * sin35º) / 9.8m/s²

= 0.702 s

The body travels for this much time and cover horizontal displacement x from the point of lunch

So, use kinematic equation for horizontal motion

horizontal displacement

x = Vcosθ*t + ½at²

2.9 m = 6.0m/s * cos35º * 0.702s + ½a * (0.702s)²

a = -2.23 m/s²

This is the horizontal acceleration of the object.

Since the object is subject to only electric force in horizontal direction, this acceleration is due to electric force only

Therefore,the magnitude of the electric force on the projectile will be

F = m*|a|

= 0.015kg * 2.23m/s²

= 0.0335 N

Thus, the magnitude of the electric force on the projectile is 0.0335N

3 0
3 years ago
Read 2 more answers
Complete the sentence to describe what a wave is and what it does.
sweet-ann [11.9K]

Answer:

A wave is a vibration in mediun tbat carries energy from one place to another.

Explanation:

7 0
3 years ago
Read 2 more answers
Please someone help!!!
antoniya [11.8K]
I know it’s the Coulomb’s law and that I’m pretty sure the answer would be C.Inverse Square.
4 0
3 years ago
Which describes how light travels?
trasher [3.6K]

Answer:

the Answer Would be D

Explanation:

From what I know light travels 300,000 km/second , travels at fast speeds and travels in a straight line

4 0
3 years ago
Read 2 more answers
Suppose you are on an airplane moving at high speed. If you flip a coin straight up it will land in your lap rather than a great
maxonik [38]
It will land in your lap because there's different frames of motion relative to yourself. For example, if you're running at a speed of 6 mph, it doesn't mean you'll run as fast as the Earth spins. Also, since you're on the interior of the plane, any kind of wind or weather on the outside will not affect the coin. A law to back up this claim is Einsteins Special Law of Relativity.
8 0
3 years ago
Read 2 more answers
Other questions:
  • Thinking about the impacts of socioeconomic status, you should A. consider the outside factors that are impacting that child's a
    13·2 answers
  • A change in a populations genes from one generation to the next due to chance or accident is refrerred as a
    5·1 answer
  • A researcher is studying traffic patterns at an intersection before an upcoming construction project. As part of this investigat
    8·2 answers
  • Scientists in a test lab are testing the hardness of a surface before constructing a building. Calculations indicate that the en
    8·1 answer
  • When Earth runs into the dust trail left behind by a comet that is orbiting the Sun, Earth experiences a _____.
    10·2 answers
  • HELPPPP WILL MARK B IF CORRECT!!!!
    9·2 answers
  • A net force of 500 N acts on a 100 kg cart. What is the acceleration of the cart if the mass is doubled?
    11·1 answer
  • Why are objects measured?​
    7·1 answer
  • Samaira needs to rent some tents for an outdoor family reunion in July what is the best type of tent for Samaira to rent so that
    7·2 answers
  • A ball is thrown off a cliff at a speed of 10 m/s in a horizontally direction. The ball reaches the ground 1.5 seconds. If the b
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!