Answer:
(a) Displacement = - 3.0576 m
(b) Velocity
m/s
(c)Acceleration = -753.39 m²/s
(d)The phase motion is 26.7
.
(e)Frequency =2.5 Hz.
(f)Time period =0.4 s
Explanation:
Given function is
![x= (5.2 m)cos[ (5\pi \ rad/s)t+ \frac\pi5]](https://tex.z-dn.net/?f=x%3D%20%285.2%20m%29cos%5B%20%285%5Cpi%20%5C%20%20rad%2Fs%29t%2B%20%5Cfrac%5Cpi5%5D)
(a)
The displacement includes the parameter t, so,at time t=5.3 s
![x|_{t=5.3}= (5.2 m)cos[ (5\pi \ rad/s)5.3+ \frac\pi5]](https://tex.z-dn.net/?f=x%7C_%7Bt%3D5.3%7D%3D%20%285.2%20m%29cos%5B%20%285%5Cpi%20%5C%20%20rad%2Fs%295.3%2B%20%5Cfrac%5Cpi5%5D)
![= (5.2 m)cos[ 26.5\pi+ \frac\pi5]](https://tex.z-dn.net/?f=%3D%20%285.2%20m%29cos%5B%2026.5%5Cpi%2B%20%5Cfrac%5Cpi5%5D)
=(5.2)(-0.588)m
= - 3.0576 m
(b)
![x= (5.2 m)cos[ (5\pi \ rad/s)t+ \frac\pi5]](https://tex.z-dn.net/?f=x%3D%20%285.2%20m%29cos%5B%20%285%5Cpi%20%5C%20%20rad%2Fs%29t%2B%20%5Cfrac%5Cpi5%5D)
To find the velocity of simple harmonic motion, we need to find out the first order derivative of the function.

![=\frac{d}{dt} (5.2 m)cos[ (5\pi \ rad/s)t+ \frac\pi5]](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bd%7D%7Bdt%7D%20%285.2%20m%29cos%5B%20%285%5Cpi%20%5C%20%20rad%2Fs%29t%2B%20%5Cfrac%5Cpi5%5D)
![= (5.2 m)(-5\pi)sin[ (5\pi \ rad/s)t+ \frac\pi5]](https://tex.z-dn.net/?f=%3D%20%20%285.2%20m%29%28-5%5Cpi%29sin%5B%20%285%5Cpi%20%5C%20%20rad%2Fs%29t%2B%20%5Cfrac%5Cpi5%5D)
![= -26\pi sin[ (5\pi \ rad/s)t+ \frac\pi5]](https://tex.z-dn.net/?f=%3D%20%20-26%5Cpi%20sin%5B%20%285%5Cpi%20%5C%20%20rad%2Fs%29t%2B%20%5Cfrac%5Cpi5%5D)
Now we can plug our value t=5.3 into the above equation
![v= -26\pi sin[ (5\pi \ rad/s)5.3\ s+ \frac\pi5]](https://tex.z-dn.net/?f=v%3D%20%20-26%5Cpi%20sin%5B%20%285%5Cpi%20%5C%20%20rad%2Fs%295.3%5C%20s%2B%20%5Cfrac%5Cpi5%5D)
m/s
(c)
To find the acceleration of simple harmonic motion, we need to find out the second order derivative of the function.
![v= -26\pi sin[ (5\pi \ rad/s)t+ \frac\pi5]](https://tex.z-dn.net/?f=v%3D%20%20-26%5Cpi%20sin%5B%20%285%5Cpi%20%5C%20%20rad%2Fs%29t%2B%20%5Cfrac%5Cpi5%5D)


![=\frac{d}{dt}( -26\pi sin[ (5\pi \ rad/s)t+ \frac\pi5])](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bd%7D%7Bdt%7D%28%20%20-26%5Cpi%20sin%5B%20%285%5Cpi%20%5C%20%20rad%2Fs%29t%2B%20%5Cfrac%5Cpi5%5D%29)
![= -26\pi (5\pi)cos[ (5\pi \ rad/s)t+ \frac\pi5]](https://tex.z-dn.net/?f=%3D%20%20-26%5Cpi%20%285%5Cpi%29cos%5B%20%285%5Cpi%20%5C%20%20rad%2Fs%29t%2B%20%5Cfrac%5Cpi5%5D)
![= -130\pi^2cos[ (5\pi \ rad/s)t+ \frac\pi5]](https://tex.z-dn.net/?f=%3D%20%20-130%5Cpi%5E2cos%5B%20%285%5Cpi%20%5C%20%20rad%2Fs%29t%2B%20%5Cfrac%5Cpi5%5D)
Now we can plug our value t=5.3 into the above equation
![a= -130\pi^2cos[ (5\pi \ rad/s)5.3 \ s+ \frac\pi5]](https://tex.z-dn.net/?f=a%3D%20%20-130%5Cpi%5E2cos%5B%20%285%5Cpi%20%5C%20%20rad%2Fs%295.3%20%5C%20s%2B%20%5Cfrac%5Cpi5%5D)
= -753.39 m²/s
(d)
The general equation of SHM is

is amplitude of the displacement,
is phase of motion,
is phase constant.
So,

Now plugging t=5.3s

=26.7 
The phase motion is 26.7
.
The angular frequency 
(e)
The relation between angular frequency and frequency is




= 2.5 Hz
Frequency =2.5 Hz.
(f)
The relation between frequency and time period is


=0.4 s
Time period =0.4 s