pH=4.625
The classification of this sample of saliva : acid
<h3>Further explanation</h3>
The water equilibrium constant (Kw) is the product of concentration
the ions:
Kw = [H₃O⁺] [OH⁻]
Kw value at 25° C = 10⁻¹⁴
It is known [OH-] = 4.22 x 10⁻¹⁰ M
then the concentration of H₃O⁺:
![\tt 10^{-14}=4.22\times 10^{-10}\times [H_3O^+]\\\\(H_3O^+]=\dfrac{10^{-14}}{4.22\times 10^{-10}}=2.37\times 10^{-5}](https://tex.z-dn.net/?f=%5Ctt%2010%5E%7B-14%7D%3D4.22%5Ctimes%2010%5E%7B-10%7D%5Ctimes%20%5BH_3O%5E%2B%5D%5C%5C%5C%5C%28H_3O%5E%2B%5D%3D%5Cdfrac%7B10%5E%7B-14%7D%7D%7B4.22%5Ctimes%2010%5E%7B-10%7D%7D%3D2.37%5Ctimes%2010%5E%7B-5%7D)
pH=-log[H₃O⁺]
Saliva⇒acid(pH<7)
The amount in grams of Al₂O₃ produced is approximately 6.80 g.
Aluminium reacts completely with oxygen(air) to produce Al₂O₃. The reaction can be represented with a chemical equation as follows:
AL + O₂ → Al₂O₃
Let's balance it
4AL + 3O₂ → 2Al₂O₃
4 moles of Aluminium reacts with 3 moles of Oxygen molecules to produce 2 moles of Aluminium oxide. Therefore,
Since, aluminium reacts completely, it is the limiting reagent in the reaction. Therefore,
Atomic mass of AL = 27 g
Molar mass of Al₂O₃ = 101.96 g/mol
4(27 g) of AL gives 2(101.96 g) of Al₂O₃
3.6 g of AL will give ?
cross multiply
mass of Al₂O₃ produced = 3.6 × 203.92 / 108 = 734.112 / 108 = 6.797
mass of Al₂O₃ produced = 6.80 g.
read more: brainly.com/question/23982245?referrer=searchResults
Answer:
Given, 0.29 g of hydrocarbon produces 448ml of CO2 at STP. then, C2H5 is the emperical formula of hydrocarbon . n = 2 , hence, molecular formula will be C4H10
Answer:
more/less depending on if it lost or gained electrons during the ionic bond process
Answer:
air rises most quikly above water so i'm confuse it's lake or river