Assuming air as ideal gas and amount of air in no of moles is known then by gas law,
PV= nRT
Pressure is constant
P* (change in volume) = nR* (change in temperature)
Answer: P = 36.75W
The additional power needed to account for the loss is 36.75W.
Explanation:
Given;
Mass of the runner m= 60 kg
Height of the centre of gravity h= 0.5m
Acceleration due to gravity g= 9.8m/s
The potential energy of the body for each step is;
P.E = mgh
P.E = 60 × 9.8 × 0.5
PE = 294J
Since the average loss per compression on the leg is 10%.
Energy loss = 10% (P.E)
E = 10% of 294J
E = 29.4J
To calculate the runner's additional power
given that time per stride is = 0.8s
Power P = Energy/time
P = E/t
P = 29.4J/0.8s
P = 36.75W
Here, ball is released... and it is in free fall means with zero initial velocity.
We know, s = ut + 1/2 at²
Here, s = 1000 m
u = 0
a = 10 m/s2
Substitute their values,
1000 = 0 + 1/2 * 10 * t²
2000 = 10 * t²
t² = 2000 /10
t = √200
t = 14.14 s
In short, Your Answer would be 14.14 seconds
Hope this helps!
The process in which water vapor and
carbon dioxide retain heat is called the greenhouse effect.
<span>There are many gases which causes greenhouse
effect like carbon dioxide, methane, nitrous oxide, fluorinated gases etc. These
gases trap the heat in the atmosphere, resulting the surface of earth to get
warm producing greenhouse effect.</span>
Answer:
true
Explanation:
The number of protons, neutrons, and electrons in an atom can be determined from a set of simple rules. The number of protons in the nucleus of the atom is equal to the atomic number (Z). The number of electrons in a neutral atom is equal to the number of protons.