The largest resultant amplitude would be that created by constructive interference, basically when the two waves are of the same phase, so it would be 0.36m+0.22m= 0.58 m.
Answer:
a) 
b) 
c) 
d)
or 18.3 cm
Explanation:
For this case we have the following system with the forces on the figure attached.
We know that the spring compresses a total distance of x=0.10 m
Part a
The gravitational force is defined as mg so on this case the work donde by the gravity is:

Part b
For this case first we can convert the spring constant to N/m like this:

And the work donde by the spring on this case is given by:

Part c
We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

And if we solve for the initial velocity we got:

Part d
Let d1 represent the new maximum distance, in order to find it we know that :

And replacing we got:

And we can put the terms like this:

If we multiply all the equation by 2 we got:

Now we can replace the values and we got:


And solving the quadratic equation we got that the solution for
or 18.3 cm because the negative solution not make sense.
True
False
True
My answers
.The path of a celestial body or an artificial satellite as it revolves around another body due to their mutual gravitational <span>attraction.</span>
Answer:
W=1705.2 J
Explanation:
Given that
mass ,m= 60 kg
Acceleration due to gravity ,g= 9.8 m/s²
Height ,h= 2.9 m
As we know that work done by a force given as
W = F . d
F=force
d=Displacement
W=work done by force
Now by putting the values
F= m g (Acting downward )
d= h (Upward)
W= m g h ( work done against the force)
W= 60 x 9.8 x 2.9 J
W=1705.2 J
Therefore the answer will be 1705.2 J.