Answer: The value of the equilibrium constant, Kc, for the reaction is 0.013
Explanation:
Initial concentration of
= 3.60 M
Initial concentration of
= 3.60 M
The given balanced equilibrium reaction is,

Initial conc. 3.60 M 3.60 M 0 M 0 M
At eqm. conc. (3.60-4x) M (3.60-7x) M (2x) M (6x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[N_2O_4]^2\times [H_2O]^6}{[NH_3]^4\times[Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BN_2O_4%5D%5E2%5Ctimes%20%5BH_2O%5D%5E6%7D%7B%5BNH_3%5D%5E4%5Ctimes%5BCl_2%5D%7D)
![[N_2O_4]=0.60M](https://tex.z-dn.net/?f=%5BN_2O_4%5D%3D0.60M)
2x = 0.60 M
x= 0.30 M
Now put all the given values in this expression, we get :


Answer:
P₂ = 394.4 KPa
Explanation:
Given data:
Volume of gas = 152 dm³
Pressure of gas = 98.6 KPa
Final pressure = ?
Final volume = quartered = 1/4×152 = 38 dm³
Solution:
P₁V₁ = P₂V₂
P₂ = P₁V₁/V₂
P₂ = 98.6 KPa . 152 dm³ / 38 dm³
P₂ = 14987.2 KPa. dm³ / 38 dm³
P₂ = 394.4 KPa
gamma radiation is produced Explanation:nun
I think D?? I apologize if not-check in other answers to be sure ^^
Answer:
0.00735°C
Explanation:
By seeing the question, we can see the elevation in boiling point with addition of BaCl₂ in water
⠀

⠀
⠀
<u>The</u><u> </u><u>elevation</u><u> </u><u>in</u><u> </u><u>boiling</u><u> </u><u>point</u><u> </u><u>is</u><u> </u><u>a</u><u> </u><u>phenomenon</u><u> </u><u>in</u><u> </u><u>which</u><u> </u><u>there</u><u> </u><u>is</u><u> </u><u>increase</u><u> </u><u>in</u><u> </u><u>boiling</u><u> </u><u>point</u><u> </u><u>in</u><u> </u><u>solution</u><u>,</u><u> </u><u>when</u><u> </u><u>the</u><u> </u><u>particular</u><u> </u><u>type</u><u> </u><u>of</u><u> </u><u>solute</u><u> </u><u>is</u><u> </u><u>added</u><u> </u><u>to</u><u> </u><u>pure</u><u> </u><u>solvent</u><u>.</u>
⠀
⠀

⠀
⠀
Where 'i' is van't hoff factor which represents the ratio of observed osmotic pressure and the value to be expected.
and 'i' is 3 (as given in the question)
⠀
'Kb' is molal boiling point constant. And it's value is 0.51°C/mol(given in question)
⠀
'm' represent the molality of solution. Molatity is no. of moles of solution present in 1kg of solution.
⠀
⠀
<u>To</u><u> </u><u>find</u><u> </u><u>molality</u><u>,</u><u> </u><u>we</u><u> </u><u>have</u><u> </u><u>to</u><u> </u><u>divide</u><u> </u><u>no</u><u>.</u><u> </u><u>of</u><u> </u><u>moles</u><u> </u><u>of</u><u> </u><u>solute</u><u> </u><u>by</u><u> </u><u>weight</u><u> </u><u>of</u><u> </u><u>solution</u>
⠀
While first we need to no. of moles

⠀
⠀
<u>Now</u><u>,</u><u> </u><u>we</u><u> </u><u>will</u><u> </u><u>find</u><u> </u><u>molality</u>
⠀

⠀
⠀

⠀

⠀
⠀
⠀
<u>Henceforth</u><u>,</u><u> </u><u>the</u><u> </u><u>change</u><u> </u><u>in</u><u> </u><u>boiling</u><u> </u><u>point</u><u> </u><u>is</u><u> </u><u>0</u><u>.</u><u>0</u><u>0</u><u>7</u><u>3</u><u>5</u><u>°</u><u>C</u><u>.</u>