Answer:
21.6 g
Explanation:
The reaction that takes place is:
First we<u> convert the given masses of both reactants into moles</u>, using their <em>respective molar masses</em>:
- 9.6 g CH₄ ÷ 16 g/mol = 0.6 mol CH₄
- 64.9 g O₂ ÷ 32 g/mol = 2.03 mol O₂
0.6 moles of CH₄ would react completely with (2 * 0.6) 1.2 moles of O₂. As there are more O₂ moles than required, O₂ is the reactant in excess and CH₄ is the limiting reactant.
Now we <u>calculate how many moles of water are produced</u>, using the <em>number of moles of the limiting reactant</em>:
- 0.6 mol CH₄ *
= 1.2 mol H₂O
Finally we<u> convert 1.2 moles of water into grams</u>, using its <em>molar mass</em>:
- 1.2 mol * 18 g/mol = 21.6 g
Answer:
x = 1, -7.5
Explanation:
2x² + 13x = 15
Divide the left side of the equation by 2
2(x² + 6.5x) = 15
Divide 6.5 by 2 and square the quotient
6.5/2 = 3.25
3.25² = 10.5625
Add 10.5625 to the left side
2(x² + 6.5x + 10.5625) = 15
Since you have a 2 outside the parentheses, you will be adding 10.5625•2 to the right side.
10.5625 • 2 = 21.125
2(x² + 6.5x + 10.5625) = 36.125
To factor (x² + 6.5x + 10.5625), add b/2 to x
b/2 = 6.5/2 = 3.25
2(x + 3.25)² = 36.125
Divide by 2
(x + 3.25)² = 18.0625
Square root.
(x + 3.25) = √18.0625
x + 3.25 = ±4.25
Subtract 3.25.
x = 4.25 - 3.25 = 1
x = -4.25 - 3.25 = -7.5
x = 1, -7.5
Answer:
pH = 6.999
The solution is acidic.
Explanation:
HBr is a strong acid, a very strong one.
In water, this acid is totally dissociated.
HBr + H₂O → H₃O⁺ + Br⁻
We can think pH, as - log 7.75×10⁻¹² but this is 11.1
acid pH can't never be higher than 7.
We apply the charge balance:
[H⁺] = [Br⁻] + [OH⁻]
All the protons come from the bromide and the OH⁻ that come from water.
We can also think [OH⁻] = Kw / [H⁺] so:
[H⁺] = [Br⁻] + Kw / [H⁺]
Now, our unknown is [H⁺]
[H⁺] = 7.75×10⁻¹² + 1×10⁻¹⁴ / [H⁺]
[H⁺] = (7.75×10⁻¹² [H⁺] + 1×10⁻¹⁴) / [H⁺]
This is quadratic equation: [H⁺]² - 7.75×10⁻¹² [H⁺] - 1×10⁻¹⁴
a = 1 ; b = - 7.75×10⁻¹² ; c = -1×10⁻¹⁴
(-b +- √(b² - 4ac) / (2a)
[H⁺] = 1.000038751×10⁻⁷
- log [H⁺] = pH → 6.999
A very strong acid as HBr, in this case, it is so diluted that its pH is almost neutral.
Answer:
m = 4450 g
Explanation:
Given data:
Amount of heat added = 4.45 Kcal ( 4.45 kcal ×1000 cal/ 1kcal = 4450 cal)
Initial temperature = 23.0°C
Final temperature = 57.8°C
Specific heat capacity of water = 1 cal/g.°C
Mass of water in gram = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 57.8°C - 23.0°C
ΔT = 34.8°C
4450 cal = m × 1 cal/g.°C × 34.8°C
m = 4450 cal / 1 cal/g
m = 4450 g