The mole fraction of KBr in the solution is 0.0001
<h3>How to determine the mole of water</h3>
We'll begin by calculating the mass of the water. This can be obtained as follow:
- Volume of water = 0.4 L = 0.4 × 1000 = 400 mL
- Density of water = 1 g/mL
- Mass of water =?
Density = mass / volume
1 = Mass of water / 400
Croiss multiply
Mass of water = 1 × 400
Mass of water = 400 g
Finally, we shall determine the mole of the water
- Mass of water = 400 g
- Molar mass of water = 18.02 g/mol
- Mole of water = ?
Mole = mass / molar mass
Mole of water = 400 / 18.02
Mole of water = 22.2 moles
<h3>How to de terminethe mole of KBr</h3>
- Mass of KBr = 0.3 g
- Molar mass of KBr = 119 g/mol
- Mole of KBr = ?
Mole = mass / molar mass
Mole of KBr = 0.3 / 119
Mole of KBr = 0.0025 mole
<h3>How to determine the mole fraction of KBr</h3>
- Mole of KBr = 0.0025 mole
- Mole of water = 22.2 moles
- Total mole = 0.0025 + 22.2 = 22.2025 moles
- Mole fraction of KBr =?
Mole fraction = mole / total mole
Mole fraction of KBr = 0.0025 / 22.2025
Mole fraction of KBr = 0.0001
Learn more about mole fraction:
brainly.com/question/2769009
#SPJ1
Answer:
wrapping a boiled water keeps the water hot..cus it's wrapped and no air can go out
Answer:
The answer to your question is pH = 6.3
Explanation:
Data
pH = ?
[H⁺] = 4.73 x 10⁻⁷ M
pH is the measure of the concentration of [H⁺]. pH measures the acidity of the solution. If the value of pH is between 0 and 6.9, the solution is an acid. If the pH is 7.0 the solution is neutral and if the pH is between 7.1 and 14, the solution is an alkali.
Formula
pH = -log[H⁺]
Substitution
pH = -log[4.73 x 10⁻⁷]
-Simplification
pH = - (-6.3)
-Result
pH = 6.3