Answer:
1) Ca: [Ar]4s²
2) Pm: [Xe]6s²4f⁵
Explanation:
1) Ca:
Its atomic number is 20. So it has 20 protons and 20 electrons.
Since it is in the row (period) 4 the noble gas before it is Ar, and the electron configuration is that of Argon whose atomic number is 18.
So, you have two more electrons (20 - 18 = 2) to distribute.
Those two electrons go the the orbital 4s.
Finally, the electron configuration is [Ar] 4s².
2) Pm
The atomic number of Pm is 61, so it has 61 protons and 61 electrons.
Pm is in the row (period) 6. So, the noble gas before Pm is Xe.
The atomic number of Xe is 54.
Therefore, you have to distribute 61 - 54 = 7 electrons on the orbitals 6s and 4f.
The resultant distribution for Pm is: [Xe]6s² 4f⁵.
Answer:
The solution will turn red.
Explanation:
HC₁₄H₁₄SO₃ + H₂O ⇌ HC₁₄H₁₄SO₃⁻ +H₃O⁺
(red) (yellow)
Methyl orange is a weak acid in which the ionized and unionized forms are distinct colours and are in equilibrium with each other,
At about pH 3.4, the two the forms are present in equal amounts, and the indicator colour is orange.
If you add more acid, you are disturbing the equilibrium.
According to Le Châtelier's Principle, when you apply a stress to a system at equilibrium, it will respond in such a way as to relieve the stress.
The system will try to get rid of the added acid, so the position of equilibrium will move to the left.
More of the unionized molecules will form, so the solution will turn red.
Answer:
Check the image file attached
Explanation:
I think it is enzymes.Inside our body most of the chemical reactions are speeds up by enzymes.These enzymes decreases the minimum energy that is required for the reaction to happen. ;-]. Actually it works like a catalyst.