Answer:
Explanation:
Firstly, we have to determine the mass of metal X. We can do that by interpreting the first and second statement mathematically.
Metal X can form 2 oxides (A and B).
A + B = 3g
The mass of oxygen in A is 0.72g and the mass of oxygen in B is 1.16g.
The mass of metal X in the two oxides will be the same because it's the same metal.
Thus, we represent the mass of the metal in the two oxides as 2X.
2X + 0.72 + 1.16 = 3
2X + 1.88 = 3
2X = 3 - 1.88
2X = 1.12
X = 0.56
<u>Thus, 0.56 g of the metal combines with 0.72g of oxygen in A and 1.16 g of oxygen in B.</u>
Thus, mass of metal (X) in 1g of oxygen in A is
0.56g ⇒ 0.72g
X ⇒ 1
X = 1 × 0.56/0.72
X = 0.78 g
Hence, 0.78g of the metal will combine with 1g of oxygen for A
Also, mass of metal (X) in 1g of oxygen in B is
0.56g ⇒ 1.16g
X ⇒ 1g
X = 1×0.56/1.16
X = 0.48 g
Thus, 0.48g of the metal will combine with 1g of oxygen for B
The planet Earth itself is considered to be a closed system because there is a limit to the amount of matter that is exchanged. However, there are open systems that are ON Earth.
Answer: Option (3) is the correct answer.
Explanation:
Aerobic organisms are the organisms which survive and grow in the presence of oxygen.
When oxidation of glucose occurs in the presence of oxygen then it is known as aerobic respiration.
In aerobic respiration, food releases energy to produce ATP which is necessary for cell activity. There is complete breakdown of glucose in aerobic respiration that is why more energy is released. Therefore, aerobic organisms become active.
Thus, we can conclude that characteristics very active, efficient use of energy describes aerobic organisms.
Heat in the mantle comes from the Earth's molten outer core, decay of radioactive elements and, in the upper mantle, friction from descending tectonic plates.The temperature difference between the upper and lower boundaries of the mantle requires heat transfer to occur.
Material heating up in the mantle
Answer:
What is most widely accepted today is the giant-impact theory. It proposes that the Moon formed during a collision between the Earth and another small planet, about the size of Mars. The debris from this impact collected in an orbit around Earth to form the Moon.
Explanation: