pH of the solution after 24. 00 ml of the hcl has been added is 12.87
millimoles NaOH = mL x M = 24.00 mL x 0.25 M = 6.00
millimoles HCl = 24.00 mL x 0.10 M = 2.40
total volume = 48.00 mL
.................................NaOH + HCl ==>NaCl + H2O
initial.........................6.00.........0............0.........0
added.....................................2.40............................
change.................... -2.40......-2.40.........+2.40.... +2.40
equilibrium.................3.60.........0..............2.40.......2.40
The NaCl contributes nothing to the pH of the final solution. The pH is determined by the excess of NaOH present. (NaOH) = millimoles/mL = 3.60/48.00 = 0.075 M = (OH^-)
pOH = -log (OH^-). Then
pOH = -log (0.075)
pOH =1.1249
As we know,
pH + pOH = pKw = 14.00
pH=14-pOH
pH=14-1.1249
pH=12.87
<h3>
What is pH?</h3>
pH is a logarithmic measure of an aqueous solution's hydrogen ion concentration. pH = -log[H+], where log is the base 10 logarithm and [H+] is the concentration of hydrogen ions in moles per liter.
The pH of an aqueous solution describes how acidic or basic it is, with a pH less than 7 being acidic and a pH greater than 7 being basic. A pH of 7 is regarded as neutral (e.g., pure water). pH values typically range from 0 to 14, though very strong acids may have a negative pH and very strong bases may have a pH greater than 14.
Learn more about pH:
brainly.com/question/491373
#SPJ4
Answer:
ΔG° = -5.4 kJ/mol
ΔG = 873.2 J/mol = 0.873 kJ /mol
Explanation:
Step 1: Data given
ΔG (NO2) = 51.84 kJ/mol
ΔG (N2O4) = 98.28 kJ/mol
Step 2:
ΔG = ΔG° + RT ln Q
⇒with Q = the reaction quatient
⇒with T = the temperature = 298 K
⇒with R = 8.314 J / mol*K
⇒with ΔG° = ΔG° (N2O4) - 2*ΔG°(NO2
)
⇒ ΔG° = 98.28 kJ/mol - 2* 51.84 kJ/mol
⇒ ΔG° = -5.4 kJ/mol
Part B
ΔG = ΔG° =RT ln Q
⇒with G° = -5.4 kj/mol = -5400 j/mol
⇒
with R = 8.314 J/K*mol
⇒with T = 298 K
⇒with Q = p(N2O4)/ [ p(NO2) ]² = 1.63/0.36² = 12.577
ΔG = -5400 + 8.314 * 298 * ln(12.577)
ΔG = -5400 + 8.314 * 298 * 2.532
ΔG = 873.2 J/mol = 0.873 kJ/mol
Equation for Half life :
A = a(0.5)^(t/h)
A is current amount, "a" is initial amount, h is halflife, t is time
5 = 40(0.5)^(t/1.3x10^9)
5/40 = (0.5)^(t/1.3x10^9)
take the log of both sides , power rule
Log(5/40) = (t/1.3x10^9) * Log(0.5)
(1.3x10^9) * Log(5/40) / Log(0.5) = t
3.9x10^9 years = t
And if you think about what a half life is, the time it take for the amount to reduce to half.
40/2 = 20
20/2 = 10
10/2 = 5
It went through 3 half-lifes
3 * 1.3x10^9 = 3.9x10^9 years
Answer:
Active transport
Explanation:
Active transport is defined as the movement of ions or molecules from a region of lower concentration into a region of higher concentration by the use of energy. Two examples of active transport include the uptake of glucose in human intestine and the absorption of mineral ions into plant roots.
Active transport requires energy because it involves the movement of molecules against an existing concentration gradient.