<u>Answer:</u> The pH of resulting solution is 8.7
<u>Explanation:</u>
To calculate the number of moles for given molarity, we use the equation:

Molarity of TRIS acid solution = 0.1 M
Volume of solution = 50 mL
Putting values in above equation, we get:

Molarity of TRIS base solution = 0.2 M
Volume of solution = 60 mL
Putting values in above equation, we get:

Volume of solution = 50 + 60 = 110 mL = 0.11 L (Conversion factor: 1 L = 1000 mL)
- To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[salt]}{[acid]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D%29)
![pH=pK_a+\log(\frac{[\text{TRIS base}]}{[\text{TRIS acid}]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5B%5Ctext%7BTRIS%20base%7D%5D%7D%7B%5B%5Ctext%7BTRIS%20acid%7D%5D%7D%29)
We are given:
= negative logarithm of acid dissociation constant of TRIS acid = 8.3
![[\text{TRIS acid}]=\frac{0.005}{0.11}](https://tex.z-dn.net/?f=%5B%5Ctext%7BTRIS%20acid%7D%5D%3D%5Cfrac%7B0.005%7D%7B0.11%7D)
![[\text{TRIS base}]=\frac{0.012}{0.11}](https://tex.z-dn.net/?f=%5B%5Ctext%7BTRIS%20base%7D%5D%3D%5Cfrac%7B0.012%7D%7B0.11%7D)
pH = ?
Putting values in above equation, we get:

Hence, the pH of resulting solution is 8.7
<span>Physical change, heat caused this.
Water molecules that only vibrate are in solid form. If heat energy is added, the molecules will speed up their vibrations until they can break loose from the organized pattern of a solid and begin to slide over each other, changing to liquid state. If more heat energy is added, the molecules will speed up more and move randomly in all directions as a gas/vapor. Removing heat energy will reverse these changes.
</span>
answer: 3g. 17kg+3 ÷ 0.25
Answer:
Succinic acid
Explanation:
The most common possibility is succinic acid
As it has decimals after whole no till hundredth it contains OH and C in most of the cases .
Let's check for succinic acid
- C4H_6O_6
- 4(12)+4(16)+6
- 64+48+6
- 118u
Yes approximately equal
Molecular formula is.
(CH_2)_2(CO_2H)_2
We can calculate how long the decay by using the half-life equation. It is expressed as:
A = Ao e^-kt
<span>where A is the amount left at t years, Ao is the initial concentration, and k is a constant.
</span><span>From the half-life data, we can calculate for k.
</span>
1/2(Ao) = Ao e^-k(30)
<span>k = 0.023
</span>
0.04Ao = Ao e^0.023(t)
<span>t = 140 sec</span>