Answer:
179.47m/s
Explanation:
Using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and u2 are the initial velocities
v is the final velocity
Substitute
7750(179)+72(230) = (7750+72)v
1,387,250+16560 = 7822v
1,403,810 = 7822v
v = 1,403,810/7822
v= 179.47m/s
Hence the final velocity of the probe is 179.47m/s
<u>Answer:</u>
Option A is the correct answer.
<u>Explanation:</u>
Let the east point towards positive X-axis and north point towards positive Y-axis.
First walking 1.2 km north, displacement = 1.2 j km
Secondly 1.6 km east, displacement = 1.6 i km
Total displacement = (1.6 i + 1.2 j) km
Magnitude = 
Angle of resultant with positive X - axis =
= 36.87⁰ east of north.
Radioactive "decay" means particles and stuff shoot OUT of a nucleus.
After that happens, there's less stuff in the nucleus than there was before.
So the new mass number is always less than the original mass number.
Answer:1.084
Explanation:
Given
mass of Pendulum M=10 kg
mass of bullet m=5.5 gm
velocity of bullet u
After collision let say velocity is v
conserving momentum we get


Conserving Energy for Pendulum
Kinetic Energy=Potential Energy

here
from diagram
therefore

initial velocity in terms of v

For first case 

for second case 

Therefore 


i.e.