To solve this problem we will apply the concepts related to resistance as a function of temperature, product of the relationship between the squared voltage and the power. Mathematically this is,

Here,
R = Resistance (At function of temperature)
v = Voltage
P = Power
Then we have,
R at 140°C (7 times room temperature),


The relationship between normal temperature and increased temperature would then be given by,




Therefore the correct value of the group of answer is 1350
Answer:
You would need to type the numbers in the question or you could have added a picture but you didn't so there is no way to answer this question. Have a nice day!
Answer:
dR/dt = 10.2 ft / s
Explanation:
Let's work this problem by finding the distance between the balloon and the motorcycle and then drift for the speed change of the distance
Balloon
y = y₀ +
t
Motorcycle
x = v₀ₓ t
Distance, let's use Pythagoras' theorem
R² = x² + y²
R² = (v₀ₓ t)² + (y₀ +
t)²
v₀ₓ = 88 ft / s
= 8 ft / s
y₀ = 150 ft
R² = (8 t)² + (150 + 8 t )²
R² = 64 t² + (150 + 8t )²
This is the expression for the distance between the two bodies, the rate of change is the derivative with respect to time (d / dt)
2RdR / dt = 64 2 t + 2 (150 + 8t) 8
dR / dt = [64 t + (1200 + 64t )] / R
dR/dt = (1200 +128 t)/R
Let's calculate for the time of 10 s
dR / dt = (1200 + 128 10) / R = 2480 /R
R = √ [64 10² + (150 + 8 10)²
R = √ [6400 + 52900]
R = 243.5 ft
dR / dt = (2480) / 243.5
dR / dt = 10.2 ft / s
In both scenarios, the position - time graph will be a linear graph, since the speed is constant, so your position is moving at a consistent pace.