Answer:
CH3CH3CH2CH3
Explanation:
Octane is a non-polar compound. It is a hydrocarbon with 8-carbon length along its chain.
It belongs to a special group of hydrocarbons called alkanes.
What makes a substance soluble in another?
It is a common phrase that "like dissolves like". This is applicable to solubility of substances in another.
- A polar solvent will freely and easily dissolve a polar solute. For example, water and salt.
- A non-polar solvent will also dissolve a non-polar solute. This case, hydrocarbons will dissolve themselves.
- The first option is a butane, a 4-carbon length hydrocarbon which will be dissolved in octane.
- Both compounds are non-polar.
Answer:
The answer is 0.023 moles of phosphorus
Explanation:
The 15-15-15 fertilizer is a fertilizer of great versatility, made with nitrogen, phosphorus and potassium, which makes it one of the fertilizers most used for fertilizer in the sowing plant, thus covering the crop requirements from planting. .
This fertilizer consists of 14.25% phosphorus pentoxide (P2O5). Therefore, we have to remove 14.25% at 10 grams of 15-15-15 fertilizer to calculate the moles of phosphorus. As follows:
Grams of P2O5 = 10 g x 0.1425 = 1.425 g
We calculate the molecular weight of phosphorus. We use the periodic table:
Phosphorus molecular weight = 2 x 30.97 = 61.94 g/mol
Now we calculate the moles of phosphorus in the fertilizer:
Phosphorus moles = 1,425 g/61.94 g/mol = 0.023 moles
<u>Answer:</u> The longest wavelength of light is 656.5 nm
<u>Explanation:</u>
For the longest wavelength, the transition should be from n to n+1, where: n = lower energy level
To calculate the wavelength of light, we use Rydberg's Equation:

Where,
= Wavelength of radiation
= Rydberg's Constant = 
= Higher energy level = 
= Lower energy level = 2 (Balmer series)
Putting the values in above equation, we get:

Converting this into nanometers, we use the conversion factor:

So, 
Hence, the longest wavelength of light is 656.5 nm
First, find moles of gold given the mass of the sample:
(35.9g Au)/(197.0g/mol Au) = 0.182mol Au
Second, multiply moles of Au by Avogrado's number:
(0.182mol)(6.02 x10^23)= 1.10x10^23 atoms Au