Answer:Nothing, the photon just bounces off the surface.
Explanation:
According to Albert Einstein, a photoelectron can only be emitted from a metal surface when the energy of the incident photon is greater than the work function of the metal.
In the scenario described in the question, the work function of the metal is greater than the energy of the photon. Hence, the photon just bounces off the metal surface without emitting any electron.
Answer:
Mass of solvent is 1127.3 g
Explanation:
NaOCl → 3.62%
This percent means, that in 100 g of bleach solution, there are 3.62 g of NaOCl. So let's make a rule of three:
100 g of bleach solution have 3.62 g
1169.6 g of bleach solution may have (1169.6 . 3.62) /100 = 42.3 g
42.3 g is the mass of NaOCl in the solution
Mass of solution = Mass of solvent + Mass of solute
1169.6 g = Mass of solvent + 42.3 g
1169.6 g - 42.3 g = Mass of solvent → 1127.3 g
Answer: The best reason the scientific community will accept a theory is if it is proven.
Answer:
M = 16.8 M
Explanation:
<u>Data:</u> HNO3
moles = 12.6 moles
solution volume = 0.75 L
Molarity is represented by the letter M and is defined as the amount of solute expressed in moles per liter of solution.

The data is replaced in the given equation:

When the product formation is decreased if a substance B is added to an enzyme reaction and more substrate being added would not increase the amount of produce formed, then we assume that substance b could be a noncompetitive inhibitor. This type of inhibitor would be one that would bind to the enzyme with or without the presence of a substrate in different sites at the same time. It would change the conformation of the enzyme and also the active sites. As a result, the substrate would not be able to bind to the enzyme more effectively than the usual. The overall efficiency would decrease.