Answer:
Option D: it's ability to lose electrons
Explanation:
Alkali metals are usually discovered in nature. They have highly reactivity at STP conditions (standard temperature and pressure conditions) and easily lose their outermost electron to form positive ions known that have a charge of +1.
Thus, what can determine the extent of reactivity of an alkali metal, is it's ability to lose electrons
<u>Answer:</u>
<em>A. 10.25</em>
<em></em>
<u>Explanation:</u>
Pkb =4.77
So pka = 14 - pka = 9.23


Initial 0.50M 0 0
Change -x +x +x
Equilibrium 0.50M-x +x +x


(-x is neglected) so we get

![pH=-log[H^3 O^+]\\\\pH=-log[1.72\times10^{-5}]\\\\pH=4.76](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E3%20O%5E%2B%5D%5C%5C%5C%5CpH%3D-log%5B1.72%5Ctimes10%5E%7B-5%7D%5D%5C%5C%5C%5CpH%3D4.76)
pOH = 14 - pH
= 14 - 4.76
pOH = 9.24 is the answer
Option A - 10.25 is the answer which is close to 9.24
<span>This is a covalent bond, a bond in which atoms share electrons. Covalent bonding generally happens between nonmetals. Covalent bonding is the type of bond that holds together the atoms within a polyatomic ion. It takes two electrons to make a covalent bond, one from each bonding atom.
</span><span>Mark as brainlist if correct please and have a blessed day!
</span>
Answer:
20.3 kJ of heat is absorbed when 9.00 g of steam condenses to liquid water.
Explanation:
Heat is being consumed during vaporization and heat is being released during condensation.
To vaporize 1 mol of water, 40.66 kJ of heat is being consumed.
Molar mass of water = 18.02 g/mol
Hence, to vaporize 18.02 g of water , 40.66 kJ of heat is being consumed.
So, to vaporize 9.00 g of water,
of heat or 20.3 kJ of heat is being consumed
As condensation is a reverse process of vaporization therefore 20.3 kJ of heat is absorbed when 9.00 g of steam condenses to liquid water.
Answer:
The new temperature of the nitrogen gas is 516.8 K or 243.8 C.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
You want to study two different states, an initial state and a final state. You have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment. By varying the temperature to a new value T2, then the pressure will change to P2, and the following will be fulfilled:

In this case:
- P1= 2 atm
- T1= 50 C= 323 K (being 0 C= 273 K)
- P2= 3.2 atm
- T2= ?
Replacing:

Solving:


T2= 516.8 K= 243.8 C
<u><em>The new temperature of the nitrogen gas is 516.8 K or 243.8 C.</em></u>