We can calculate the density of the balloon as follows:
Therefore, the balloon will fall
Since the density of air is about 0.00123 g/cm^3 , the balloon is much more dense than the surrounding air. As a result, the balloon weighs more than the air that it displaces so the balloon will fall.
A good hypothesis describes your ideas and how you think the experiment will conclude. Additionally, hypotheses have scientific information included.
Density is defined as [mass] / [volume] .
The only choice listed with those physical dimensions is 'd' .
Answer:
Energy due to air resistance = 31.8 Joules
Explanation:
According to the law of conservation of energy, energy can neither be created nor destroyed but can be transformed from one form to another
Kinetic Energy + Energy due to air resistance = Potential energy..........(1)
If there is no energy loss due to air resistance, potential energy = kinetic energy
mass, m = 1.5 kg
height, h = 4.0 m
speed, v = 6 m/s
Kinetic energy = 0.5 mv²
Kinetic energy = 0.5 * 1.5 * 6²
Kinetic energy = 27 Joules
Potential Energy = mgh
Potential energy = 1.5 * 9.8 * 4
Potential energy = 58.8 Joules
From equation (1)
27 + Energy due to air resistance = 58.8
Energy due to air resistance = 58.8 - 27
Energy due to air resistance = 31.8 Joules