This is an incomplete question, here is a complete question.
Calculate the solubility of each of the following compounds in moles per liter. Ignore any acid-base properties.
CaCO₃, Ksp = 8.7 × 10⁻⁹
Answer : The solubility of CaCO₃ is, 
Explanation :
As we know that CaCO₃ dissociates to give
ion and
ion.
The solubility equilibrium reaction will be:

The expression for solubility constant for this reaction will be,
![K_{sp}=[Ca^{2+}][CO_3^{2-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCa%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D)
Let solubility of CaCO₃ be, 's'




Therefore, the solubility of CaCO₃ is, 
Consider this balanced chemical equation:
2 H2 + O2 → 2 H2O
We interpret this as “two molecules of hydrogen react with one molecule of oxygen to make two molecules of water.” The chemical equation is balanced as long as the coefficients are in the ratio 2:1:2. For instance, this chemical equation is also balanced:
100 H2 + 50 O2 → 100 H2O
This equation is not conventional—because convention says that we use the lowest ratio of coefficients—but it is balanced. So is this chemical equation:
5,000 H2 + 2,500 O2 → 5,000 H2O
Again, this is not conventional, but it is still balanced. Suppose we use a much larger number:
12.044 × 1023 H2 + 6.022 × 1023 O2 → 12.044 × 1023 H2O
These coefficients are also in the ratio of 2:1:2. But these numbers are related to the number of things in a mole: the first and last numbers are two times Avogadro’s number, while the second number is Avogadro’s number. That means that the first and last numbers represent 2 mol, while the middle number is just 1 mol. Well, why not just use the number of moles in balancing the chemical equation?
2 H2 + O2 → 2 H2O
Answer:
C. Its oxidation number increases.
Explanation:
- <em><u>Oxidation is defined as the loss of electrons by an atom while reduction is the gain of electrons by an atom</u></em>.
- Atoms of elements have an oxidation number of Zero in their elemental state.
- When an atom looses electrons it undergoes oxidation and its oxidation number increases.
- For example, <em><u>an atom of sodium (Na) at its elemental state has an oxidation number of 0. When the sodium atom looses an electrons it becomes a cation, Na+, with an oxidation number of +1 , the loss of electron shows an increase in oxidation number from 0 to +1.</u></em>
Answer:- There are
moles.
Solution:- It is a unit conversion problem where we are asked to convert mg of aspartame to moles. Aspartame is
and it's molar mass is 294.31 grams per mole.
mg are converted to grams and then the grams are converted to moles as:

=
moles of aspartame
So, there would be
moles of aspartame in 1.00 mg of it.