Answer: 1.95
Explanation:
You should start off from the decay formula and solve for τ:


Apply inverse logarithmic function:

The final form will be:

Inputing values for I, IO, and t:
Answer:
spacing between the slits is 405.32043 ×
m
Explanation:
Given data
wavelength = 610 nm
angle = 2.95°
central bright fringe = 85%
to find out
spacing between the slits
solution
we know that spacing between slit is
I = 4
× cos²∅/2
so
I/4
= cos²∅/2
here I/4
is 85 % = 0.85
so
0.85 = cos²∅/2
cos∅/2 = √0.85
∅ = 2 ×
0.921954
∅ = 45.56°
∅ = 45.56° ×π/180 = 0.7949 rad
and we know that here
∅ = 2π d sinθ / wavelength
so
d = ∅× wavelength / ( 2π sinθ )
put all value
d = 0.795 × 610×
/ ( 2π sin2.95 )
d = 405.32043 ×
m
spacing between the slits is 405.32043 ×
m
Answer: The answer is A for sure
Explanation:
That is, there will be no acceleration. If you are sitting at rest in a chair and the upward push of the chair is equal to the downward pull of gravity, you will stay at rest in the chair. ... You now have an unbalanced force acting on you and therefore, according to Newton's First Law, your motion is going to change.
Plz give brainlest :)
Answer:
-0.79 J
Explanation:
We are given that





We have to find the work done by the electric force on the moving point charge.


Work done,
Where 
Using the formula


Weight = (mass) x (acceleration of gravity where the object is)
You didn't tell us WHERE the boulder is, so I have to assume that it's on Mars, where the acceleration of gravity is 3.71 m/s².
675,000 N = (mass) (3.71 m/s²)
Mass = (675,000 N) / (3.71 m/s²)
<em>Mass = 181,941 kilograms</em>
The same weight on Earth would suggest a mass of only 68,807 kg, so you can see how important it is to know where you are when you make your measurements.