1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pav-90 [236]
3 years ago
10

Which of the following choices correctly identifies the process created by moving a magnet through a conducting loop?

Physics
1 answer:
jolli1 [7]3 years ago
3 0

Answer: D.) electromagnetic induction

Explanation: Electroctromagnetic induction may be explained as a process whereby electric current is induced or produced by difference in potential resulting from the movement of conductor across a magnetic field.

In simple terms, an electromotive force is induced when a magnet is moved through a conducting loop.

The electromotive force produced by moving a magnet through a conducting loop can be represented by the relation:

E = - N (dΦ / dt)

Where E = electromotive force in voltage

N = number of loop in conductor

dΦ = change in magnetic Flux

dt = change in time

You might be interested in
What is loudness of sound?
dedylja [7]
The loudness of sound refer to how loud or soft a sound seems to a listener
6 0
3 years ago
Read 2 more answers
A large cylindrical tank contains 0.750 cubic meters of nitrogen gas at 27 degrees celsius and 1.5 e5 pa absolute pressure. the
k0ka [10]
<span>3.36x10^5 Pascals The ideal gas law is PV=nRT where P = Pressure V = Volume n = number of moles of gas particles R = Ideal gas constant T = Absolute temperature Since n and R will remain constant, let's divide both sides of the equation by T, getting PV=nRT PV/T=nR Since the initial value of PV/T will be equal to the final value of PV/T let's set them equal to each other with the equation P1V1/T1 = P2V2/T2 where P1, V1, T1 = Initial pressure, volume, temperature P2, V2, T2 = Final pressure, volume, temperature Now convert the temperatures to absolute temperature by adding 273.15 to both of them. T1 = 27 + 273.15 = 300.15 T2 = 157 + 273.15 = 430.15 Substitute the known values into the equation 1.5E5*0.75/300.15 = P2*0.48/430.15 And solve for P2 1.5E5*0.75/300.15 = P2*0.48/430.15 430.15 * 1.5E5*0.75/300.15 = P2*0.48 64522500*0.75/300.15 = P2*0.48 48391875/300.15 = P2*0.48 161225.6372 = P2*0.48 161225.6372/0.48 = P2 335886.7441 = P2 Rounding to 3 significant figures gives 3.36x10^5 Pascals. (technically, I should round to 2 significant figures for the result of 3.4x10^5 Pascals, but given the precision of the volumes, I suspect that the extra 0 in the initial pressure was accidentally omitted. It should have been 1.50e5 instead of 1.5e5).</span>
8 0
3 years ago
In which phase of matter are the atoms closely packed but still able to slide past each other?
borishaifa [10]
The phase of matter is the Solid Phase.
3 0
3 years ago
What is the value of the composite constant (Gme,/r2e) to be multiplied by the mass of the object mo, in equation below:
Sedbober [7]

To solve this problem we will apply the definitions given in Newtonian theory about the Force of gravity, and the Force caused by weight. Both will be defined below, and in equal equilibrium condition to clear the variable concerning acceleration due to gravity. Finally, with the values provided in the statement, it will be replaced.

The equation for the gravitational force between the Earth and the object on the surface of the Earth is

F_g = \frac{Gm_em_o}{r^2_e}

Where,

G = Universal gravitational constant

m_e = Mass of Earth

r_e= Distance between object and center of earth

m_o= Mass of Object

The equation for the gravitational pulling force on the object due to gravitational acceleration is

F_g = m_o g

Equation the two expression we have

m_o g = \frac{Gm_em_o}{r_e^2}

g = \frac{Gm_e}{r_e^2}

This the acceleration due to gravity which is composite constant.

Replacing with our values we have then

g = \frac{(6.67*10^{-11}N\cdot m^2/kg^2)(5.98*10^{24}kg)}{6378km(\frac{10^3m}{1km})^2}

g = 9.8m/s^2

The value of composite constant is 9.8m/s^2. Here, the composite constant is nothing but the acceleration due to gravity which is constant always.

8 0
3 years ago
What is the kinetic energy of a golf ball with a mass of 0.046 kg traveling at 15.5<br> m/s?
Serjik [45]

Answer:

<h2>5.53 J</h2>

Explanation:

The kinetic energy of an object can be found by using the formula

k =  \frac{1}{2} m {v}^{2}  \\

m is the mass

v is the velocity

From the question we have

k =  \frac{1}{2}  \times 0.046 \times {15.5}^{2}  \\  = 0.023 \times 240.25 \\  = 5.52575

We have the final answer as

<h3>5.53 J</h3>

Hope this helps you

3 0
2 years ago
Other questions:
  • To practice Problem-Solving Strategy 15.1 Mechanical Waves. Waves on a string are described by the following general equation y(
    7·1 answer
  • Give one advantage and one disadvantage of using nuclear power stations rather than
    15·1 answer
  • If you increase the frequency of a sound wave four times what will happen to its speed
    13·2 answers
  • Which statement correctly describes the current in a circuit that is made up of any two resistors connected in parallel with a b
    13·1 answer
  • Determine the mechanical energy of this object: a 2-kg pendulum has a speed of 1 m/s at a height of 1/2 meter.
    11·2 answers
  • A mass spectrometer is used to examine the isotopes of uranium. Ions in the beam emerge from the velocity selector at a speed of
    11·1 answer
  • The magnetic field at the centre of a toroid is 2.2-mT. If the toroid carries a current of 9.6 A and has 6.000 turns, what is th
    14·2 answers
  • A _____ accelerates a chemical reaction in a cell.<br> substrate<br> catalyst<br> buffer
    7·2 answers
  • Name the following ionic bonds.
    14·2 answers
  • A projectile has an initial x-velocity of 4 m/s, and an initial y-velocity of 27.7 m/s. What is the range of the projectile
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!