Answer: The empirical formula for C6H12O6 is CH2O. Every carbohydrate, be it simple or complex, has an empirical formula CH2O
Explanation:
Answer:
the answer is c. their atomic masses are different clearly because an atom of gold has 79 protons and the atom can be divided multiple times. An atom of silver has an atomic number of 47. 47 electrons. Clearly different. Hope it helps :)
Explanation:
<span>136.14 g/mol </span><span><span>Calcium sulfate, Molar mass</span></span>
Answer:
The answer to your question is 0.5 moles
Explanation:
Data
moles of Glucose = ?
moles of carbon dioxide = 3
Balanced chemical reaction
6CO₂ + 6H₂O ⇒ C₆H₁₂O₆ + 6O₂
Process
To solve this problem, use proportions, and cross multiplication.
Use the coefficients of the balanced equation.
6 moles of CO₂ ----------------- 1 mol of C₆H₁₂O₆
3 moles of CO₂ ---------------- x
x = (3 x 1) / 6
-Simplification
x = 3/6
-Result
x = 0.5 moles of Glucose
Answer:
3.6
Explanation:
Step 1: Given data
- Concentration of formic acid: 0.03 M
- Concentration of formate ion: 0.02 M
- Acid dissociation constant (Ka): 1.8 × 10⁻⁴
Step 2: Calculate the pH
We have a buffer system formed by a weak acid (HCOOH) and its conjugate base (HCOO⁻). We can calculate the pH using the <em>Henderson-Hasselbach equation</em>.
![pH = pKa +log\frac{[base]}{[acid]} = -log 1.8 \times 10^{-4} + log \frac{0.02}{0.03} = 3.6](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2Blog%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%3D%20-log%201.8%20%5Ctimes%2010%5E%7B-4%7D%20%2B%20log%20%5Cfrac%7B0.02%7D%7B0.03%7D%20%3D%203.6)