To answer your question I will use dimensional analysis, which is used by cancelling out the units. I will also use the balanced equation provided as a conversion factor.
A) First start out with the 0.300 mol of C6H12O6...
0.300 mol C6H12O6 * (2 mol CO2 / 1 mol C6H12O6) = 0.600 mol CO2
*The significant figures (sig figs) at still three, the 2 is a conversion counting number and does not count*
B) First change 2.00 g of C2H5OH to moles of C2H5OH...
The molecular mass of C2H5OH is...
2(12.01 g/mol) + 5(1.008 g/mol) + 16.00 g/mol + 1.008 g/mol = 46.07 g/mol
This can be used as a conversion factor to change grams to moles.
2.00 g C2H5OH * (1 mol C2H5OH / 46.07 g C2H5OH) = 0.0434 mol C2H5OH
Second, you can change the moles of C2H5OH to moles of C6H12O6..
0.0434 mol C2H5OH * (1 mol C6H12O6 / 2 mol C6H12O6) = 0.0217 mol C6H12O6
Third, change moles of C6H12O6 to grams...
MM = 6(12.01 g/mol) + 12(1.008 g/mol) + 6(16.00 g/mol) = 180.16 g/mol
0.0217 mol C6H12O6 * (180.16 g C6H12O6 / 1 mol C6H12O6) = 3.91 g C6H12O6
C) Now I am going to put it all into one long dimensional analysis problem.
MM of CO2 = 44.01 g/mol
MM of C2H5OH = 46.07 g/mol
2.00 g C2H5OH * (1 mol C2H5OH / 46.07 g C2H5OH) * (2 mol CO2 / 2 mol C2H5OH) * (44.01 g CO2 / 1 mol CO2) = 1.91 g CO2
I hope this helped and I am sorry that I talked to much, I just didn't want to miss anything!
<u>Answer</u>
So this is the reaction that happens.
<span>C4H10 + O2 = CO2 + H2O </span>
<span>Balanced, it is </span>
<span>2C4H10 + 8O2 = 8CO2 + 10H2O </span>
<span>Given 1 kg or 1000 g of butane, use stoichiometry aka factor labeling aka conversions and mole ratios to get to grams of oxygen. </span>
<span>I'll do an example. Let's form water. Hydrogen is diatomic too. </span>
<span>2H2 + O2 = 2H2O </span>
<span>Given 1000 g of Hydrogen, I need to know how many grams of oxygen to use. To convert grams to moles,
I know that 1 mol of H2 equals 2.02 g. Then, for every mole of O2, there are 2 moles of H2. Then converting moles of O2 to grams, I know that one mole of it equals 32 grams. </span>
<span>[1000 g H2] x [1 mol H2/2.02 g H2] x [1 mol O2/2 mol H2] x [32 g O2/1 mol O2] </span>
<span>My answer would be 7.9 kg </span>
Answer:
The chemical formula is I2F9
Explanation:
Answer:
Y > X > Z
Explanation:
The intermoecular forces refer to forces that exist between molecules of a substance. They are the secondary bond forces that hold particles of a substance together in a particular state of matter.
The shorter the distance between molecules, the greater the magnitude of intermolecular force between the molecules.
The molecules of Y are at the shortest distance from each other hence they have the highest magnitude of intermolecular forces. Followed by X and lastly Z with the greatest distance between the largest intermolecular distance.
Explanation:
nnbbnmkmknn bnnnbbtbbbbn' nn' t